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1 Introduction

Like content on the web, scientific data is highly heterogeneous and can benefit from
rich semantic descriptions. In our work, we are particularly interested in developing an
infrastructure for expressing explicit and fine-grain semantic descriptions of ecological
data (and life-sciences data in general), and exploiting these descriptions to provide
automated data integration and transformation within scientific workflows [2]. Using
semantic descriptions, our goal is to provide scientists with: (1) tools to easily search
for and retrieve datasets relevant to their study (i.e., dataprocurement), (2) the ability to
select a subset of returned datasets as input to a scientific workflow, and (3) automated
integration and restructuring of the selected datasets for seamless workflow execution.

As part of this effort, we are developing theSemantic Mediation System(SMS)
within the SEEK project4, which aims at combining semantic-web technologies—
namely OWL and RDF—with traditional data-integration techniques [3, 6, 7]. We ob-
serve that along with these “traditional” approaches, mediation of ecological data also
requires external, special-purpose services for accessing information not easily or con-
veniently expressed using conceptual modeling languages, such as description logics.
The following are two specific examples of ecologically relevant, external services that
can be exploited for scientific-data integration and transformation.

Taxonomic Classification and Mapping. There is an extensive body of knowledge
on species (both extinct and existing) represented in a variety of different taxonomic
classifications, and new species are being discovered continually [9]. The same species
can be denoted in many ways across different classifications, and resolving names of
species requires mappings across multiple classification hierarchies [11]. Within SMS
we want to leverage operations that exploit these existing mappings, e.g., to obtain
synonyms of species names, without explicitly representing the mappings or simulating
the associated operations within the mediator.

Semantics-Based Data Conversion. We are interested in applying operations during
mediation that can transform and integrate data values based on their implied mean-
ing. However, for scientific data, the nature of these conversions are often difficult to
express explicitly within a conceptual model. A large number of ecological datasets rep-
resent real-world observations (like measuring the abundance of a particular species),
? This work supported in part by NSF grant ITR 0225676.
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and therefore often have slightly different spatial and temporal contexts, use different
measurement protocols, and measure similar information in disparate ways (e.g., area
and count in one dataset, and density, which is a function of area and count, in a second
dataset). Like with taxonomic classification, we want the mediator to exploit existing
conversion operations when possible.

We note that the application of semantics-based data conversion often depends on
usage, i.e., some conversions may only be applied when certain conditions are met by
the associated datasets. Thus, to correctly apply such conversions, SMS may require
additional information to determine whether a particular conversion is applicable for a
given dataset. In general, we believe that new techniques are required to support the use
of these and similar external services within traditional data-integration architectures.

This short paper describes an initial logic-based SMS prototype that leverages on-
tologies, semantic descriptions, and simple external services (primarily taxonomic) to
help researchers find relevant datasets for ecological modeling. The rest of this paper
is organized as follows. In Section 2 we describe the motivating scenario for our SMS
prototype. In Section 3 we discuss the details of the prototype. And finally, in Section 4
we conclude by discussing future work.

2 Motivation: Ant Parasitism and Niche Modeling

A diverse and much studied group of organisms in ecology is the familyFormicidae,
commonly known as ‘ants’. Ants generally account for ten to fifteen percent of the
animal biomass of any given area. Beyond their important role in churning much of
the earth’s soil, ants are social animals that provide insights into the evolution of social
behaviors. One such complex social behavior is parasitism between ant species [4].

The environments in which parasitism is likely to occur provides important data on
how parasitism arises. For example, one theory states that inter-ant parasitism is more
likely to arise in colder climates than in warmer ones. Thus, an ecological researcher
may be interested in testing the high-level question:In California, based on existing
data, which environmental properties play an important role in determining the ranges
of ants involved in inter-ant parasitism?

The verification of this question requires access to a wide array of data: (1) the types
of parasitic relationships that exist between ants, (2) the names of species of ants taking
part in these parasitic relationships, (3) georeferenced observations of these species of
ants, and (4) the climate and other environmental data within the desired locations.

Today, these datasets are typically sought out by the researcher, retrieved, and inte-
grated by hand. The researcher analyzes the data by running it through an appropriate
ecological model, the result of which is used to help verify a hypothesis. In our exam-
ple, an ecological niche model [8] can be used, which takes data about the presence
of a species and the environmental conditions of the area in question, and produces a
set of rules that define a “niche” (i.e., the conditions necessary for the species to exist)
relative to the given environmental conditions and presence data. The rest of this paper
describes a first step towards helping a researcher easily collect the datasets needed to
test inter-ant parasitism, and similar high-level questions.
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Fig. 1.The initial SMS architecture for ecological data mediation.

genus species count lat lon
d1 Manica parasitica 2 37.85 -119.57

genus species cnt lt ln
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Fig. 2.Four heterogeneous datasetsd1 throughd4.

3 The Prototype

Our dataset-discovery architecture is shown in Figure 1. A set of repositories store
ontological information, datasets, and semantic descriptions. Each dataset added to the
respository is required to have a corresponding semantic description, expressed as a
soundlocal-as-viewmapping [6, 7] against concepts and roles in the ontologies. We
also consider external services, which currently consist of synonym and unit-conversion
operations. The SMS engine accepts a user query and returns the set of relevant datasets
that satisfy the given query.

Figure 2 gives examples from four datasets used in analyses involving ant and inter-
ant parasite presence data. Datasetd1 in Figure 2 contains georeferenced ant data from
AntWeb5 and consists of approximately seventeen-hundred observations, each of which
consist of a genus and species scientific name, an abundance count, and the location of
the observation. Datasetd2 in Figure 2 contains similar georeferenced ant data from
the Iziko South African Museum (ISAM),6 consisting of about twelve-thousand obser-
vations. Datasetd3 in Figure 2 is a typical representation used for georeferenced co-
occurence data, where species are encoded within the schema of the table. This dataset
contains only five tuples. Datasetd4 in Figure 2 describes specific ants that participate
in inquilinism inter-ant parasitism. The first two columns denote the parasite and the
last two columns denote the host. Over two-hundred pairs of ants are described using
four distinct datasets, each representing a particular parasitic relationship (all data were
derived from Table 12-1 of [4]). Finally, Figure 3 shows a simplified fragment of the
measurement and parasitism ontologies currently being developed within SEEK (where
solid arrows denoteisa relations).

5 See www.antweb.org
6 Provided by Hamish Robertson, Iziko Museums of Cape Town
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Fig. 3.Simplified ontologies for measurement observations and inter-ant parasitism.

The following conjunctive queries define semantic descriptions of datasetsd1, d3,
andd4 (note that the semantic description ofd2 is identical tod1). Each semantic de-
scription expresses alocal-as-viewmapping [6, 7], defining a dataset in terms of the
ontology of Figure 3.

d1(Ge,Sp,Co,Lt,Ln) :-
Observation(O), value(O,Co), context(O,S), location(S,P), LatLonPoint(P),
latDeg(P,Lt), lonDeg(P,Ln), item(O,A), Abundance(A), property(A,N), SciName(N),
genus(N,Ge), species(N,Se).

d3(Mp, Cf, Lt, Ln) :-
Observation(O1), value(O1,Mp), context(O1,S), location(S,P), LatLonPoint(P),
latDeg(P,Lt), lonDeg(P,Ln), item(O1,A1), Abundance(A1), property(A1,N1),
SciName(N1), genus(N1,‘Manica’), species(N1,‘parasitica’), Observation(O2),
value(O2,Cf), context(O2,S), item(O2,A2), Abundance(A2), property(A2,N2),
SciName(N2), genus(N2,‘Aphaenogaster’), species(N2,‘calderoni’).

d4(G1,S1,G2,S2) :-
InquilinismParasite(P), SciName(P), genus(P,G1), species(P,S1), InquilinismHost(H),
genus(H,G2), species(H,S2), inquilinismOf(P,H).

The following example is a dataset-discovery query that finds all datasets contain-
ing georeferenced abundance measurements of Manica bradleyi ants observed within
California (as defined by the given bounding box). Dataset-discovery queries allow
predicates to beannotatedwith dataset variables, given asD below. A dataset han-
dle is returned by the query if each formula annotated withD is satisfied by the dataset,
assuming the given inequality (i.e., the latitude-longitude) conditions also hold.

q1(D) :- Observation(O)D, context(O,S)D, location(S,P)D, LatLonPoint(P)D,
latDeg(P,Lt)D, lonDeg(P,Ln)D, item(O,A)D, Abundance(A)D, property(A,N)D,
SciName(N)D, genus(N,‘Manica’)D, species(N,‘bradleyi’)D, Lt ≥ 33, Lt ≤ 42,
Ln ≥ -124.3, Ln ≤ -115.

Using a standard data-integration query-answering algorithm [7], the query above is an-
swered by (1) findingrelevantinformation sources, i.e., sources whose view mappings



overlap with the given query, and (2) using the relevant sources, rewriting the user query,
producing a sound query expressed only against the underlying data sources, possibly
containing additional conditions. We extend this approach by also considering dataset
annotations on query formulas. In our example,d1 andd2 are the only relevant datasets
for the above query, giving the following query rewritings. Note that after executing the
queries below, onlyd1 is returned; the ISAM dataset does not contain the given species.

q1(d1) :- d1(‘Manica’,‘bradleyi’,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115.
q1(d2) :- d2(‘Manica’,‘bradleyi’,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115.

The following query is similar toq1, but uses an external service (prefixed with
‘ext:’) for computing synonymy of species names.

q2(D) :- Observation(O)D, context(O,S)D, location(S,P)D, LatLonPoint(P)D,
latDeg(P,Lt)D, lonDeg(P,Ln)D, item(O,A)D, Abundance(A)D, property(A,N)D,
SciName(N)D, genus(N,Ge)D, species(N,Sp)D, Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3,
Ln ≤ -115, ext:synonym(‘Manica’,‘bradleyi’,Ge,Sp).

The synonymy operation, encapsulated as a logical formula above, draws from descrip-
tions (expressed as XML files) in the Hymenoptera Name Server [5], and supports over
twenty-five hundred taxa of ants and their synonymy mappings. In the operation, a
given genus-species pair is always a synonym of itself. We note that in the prototype,
we equate synonyms between taxa as equivalence relations. This assumption is often an
oversimplification [1] and in future work we intend to explore the impact of different
synonymy relations between taxa.

The following rewritings are obtained from the above query. After execution, the
rewritten q2 query will return datasetd1 as well as datasetd3; the latter because
Aphaenogaster calderoni is a synonym of Manica bradleyi. Note that we could have
discarded the third rewriting below since all arguments of the synonym operation are
ground, and for the particular binding, the species’ are not valid synonyms.

q2(d1) :- d1(Ge,Sp,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge,Sp).

q2(d2) :- d2(Ge,Sp,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge,Sp).

q2(d3) :- d3(Mp,Cf,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,‘Manica’,‘parasitica’).

q2(d3) :- d3(Mp,Cf,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,‘Aphaenogaster,‘calderoni’).

Finally, the following query finds datasets containing georeferenced measurements
of parasites of Manica bradleyi within California. Thus, the query finds the relevant ant
presence data needed for our researcher’s high-level question, for a single host species.
The query uses the external synonym operation and projects the latitude, longitude,
and genus and species names of the relevant observations (which could be used as
“provenance” information, or for filtering the dataset for use in an analytical model).



q3(D,Lt,Ln,Ge,Sp) :- Observation(O)D, context(O,S)D, location(S,P)D, LatLonPoint(P)D,
latDeg(P,Lt)D, lonDeg(P,Ln)D, item(O,A)D, Abundance(A)D, property(A,N)D,
SciName(N)D, genus(N,Ge)D, species(N,Sp)D, Lt ≥ 32, Lt ≤ 42, Ln ≥ -124.3,
Ln ≤ -115, Host(Ho), genus(Ho,Ge1,Sp1), ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1),
Parasite(Pa,Ge2,Sp2), parasiteOf(Pa,Ho), ext:synonym(Ge2,Sp2,Ge,Sp).

The rewritings of q3 are shown below. The result of executing the query
will include the tuples (d1,37.85,-119.57,‘Manica’,‘parasitica’) and (d3,37.56,-
120.03,‘Manica’,‘parasitica’), where only datasetsd1 and d3 will contain possible
answers. In particular, Manica parasitica are inquilinism parasites of Manica bradleyi,
which is derived from datasetd4 by computing Manica bradleyi synonyms.

q3(d1,Lt,Ln,Ge,Sp) :- d1(Ge,Sp,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge2,Sp2,Ge,Sp).

q3(d1,Lt,Ln,Ge,Sp) :- d2(Ge,Sp,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge2,Sp2,Ge,Sp).

q3(d1,Lt,Ln,Ge,Sp) :- d3(Mp,Cf,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge2,Sp2,‘Manica’,‘parasitica’).

q3(d1,Lt,Ln,Ge,Sp) :- d3(Mp,Cf,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge2,Sp2,‘Aphaenogaster,‘calderoni).

4 Summary and Future Work

The prototype described in this paper enables dataset-discovery queries and provides
initial support for mixing external services with query-answering techniques. The pro-
totype was written in Prolog and has an accompanying web interface for parameterizing
(i.e., for selecting the geographic region, species, and parasitic relationship of inter-
est) and displaying query results. The prototype also implements a simple description-
logic reasoner for ontology classification, which is used in query answering (to find
relevant mappings). As future work, we want to extend the prototype presented by (i)
adding additional external services relevant to SEEK (e.g., for computing points within
complex bounding boxes, incorporating gazetteers, adding additional synonym opera-
tions, etc.) and (ii) exploring techniques to enrich our framework for further exploiting
arbitrary external services in query answering. As an example, consider the follow-
ing semantic description for a dataset similar tod1 and an externally defined service
UTM2LatLon(Ux,Uy,Re,Zo,Lt,Ln) that converts UTM to latitude-longitude degree coor-
dinates.

d5(Ge,Sp,Co,Ux,Uy,Re,Zo) :-
Observation(O), value(O,Co), context(O,S), location(S,P), UTMPoint(P),
UTMx(P,Ux), UTMy(P,Uy), region(P,Re), zone(P,Zo), item(O,A), Abundance(A),
property(A,N), SciName(N), genus(N,Ge), species(N,Se).



In answering queryq1, we want to (1) returnd5 as a relevant source, since UTM points
can be converted to latitude-longitude points (using the external service), and (2) cor-
rectly insert the external service in the associated query rewriting. We are currently
exploringparameter dependencyspecifications for this purpose, in which the domain
and range of an external service are semantically described, e.g., using rules similar to
the following.

domain UTM2LatLon(Ux,Uy,Re,Zo,Lt,Ln) :- UTMPoint(U), UTMx(Ux), UTMy(Uy),
region(U,Re), zone(U,Zo).

range UTM2LatLon(Ux,Uy,Re,Zo,Lt,Ln) :- LatLonPoint(P), latDeg(P,Lt), lonDeg(P,Ln).

We believe that incorporating external services into data-integration architectures
provides a powerful framework to support complex integration and transformation of
scientific, and in particular, life-sciences data.
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