
Reasoning about Taxonomies
By

David Michael Thau

B.S. Cognitive Science (University of California, Los Angeles) 1989
M.S. Psychology (University of Michigan, Ann Arbor) 1991

M.S. Computer Science (University of Michigan, Ann Arbor) 1993

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Bertram Ludäscher (Chair)

Premkumar Devanbu

James F. Quinn

Committee in Charge
2010

i

David Michael Thau
June 2010

Computer Science

Reasoning about Taxonomies

Abstract

Taxonomically organized data pervade science, business, and everyday life. Unfortu-

nately, taxonomies are often under-specified, or even inconsistent, limiting their utility in

contexts such as data integration, information navigation, and autonomous agent commu-

nication. This work formalizes taxonomies and articulations (relationships between taxa in

taxonomies) as first-order formulas. This formalization concretizes notions such as consis-

tency and inconsistency of taxonomies and articulations between them, enables the deriva-

tion of new articulations based on a given set of taxonomies and articulations, and provides

a framework for testing assumptions about under-specified taxonomies.

Given the typical intractability of reasoning with taxonomies and articulations, this

research also investigates many optimizations: from those that reduce the search space, to

those that leverage parallel processing, to those investigating logics more tractable than

first-order logic (e.g., monadic first-order logic, propositional logic, description logics, and

subsets of the RCC-5 spatial algebra). Finally, in addition to reasoning with taxonomies

and articulations, this research investigates how to merge taxonomies given articulations

and how to merge data sets that have been annotated to aligned taxonomies. Critical

to this research is the development of a framework for testing logics and supporting the

development of taxonomies and articulations. This framework, CleanTax, has been im-

plemented and has been used to study articulations between several large-scale biological

taxonomies.

ii

Dedicated to Kirsten Rose Menger-Anderson

iii

Acknowledgments

This work would not have been possible without the help of a great number of people.

In roughly chronological order, I will start with my parents, Robert and Vera Thau, who

instilled in me interests in computer science, human learning and classification, and natural

history. Jumping ahead in time, I’d like to thank my undergraduate advisor Keith Holyoak,

whose work on concept mapping in analogy informed my research, and Douglas Medin,

whose research in the psychological underpinnings of human categorizations of life forms

provided me with an early nudge in the direction of this dissertation. The direct roots

of the research described here were planted at the All Species Foundation, and I would

like to thank Kurt Bollacker, Kevin Kelly, and Ryan Phelan for involving me in that

project. While there, I met David Vieglais, Stan Blum, Brian Fisher, Robert A. Morris,

John Wieczorek, and Jim Beach, all of whom have been a continual source of inspiration,

support and assistance. Through this set of people, I became involved in the Science

Environment for Ecological Knowledge (SEEK) project, where I met Bertram Ludäscher,

Shawn Bowers, Bob Peet, Matt Jones, Aimee Stewert, Jessie Kennedy, Mark Schildhauer,

Nico Franz, Chad Berkley, Deana Pennington, and numerous other fantastic people who

unwittingly convinced me to return to graduate school to focus on the work presented

here. While in graduate school, I received a great deal of assistance and support from the

members of the Data and Knowledge Systems lab and other students in the department,

most notably Daniel Zinn, Tim McPhillips, Sean Riddle, Manish Anand, Carlos Rueda,

Till Stegers, Balaji Venkatachalam, and Ananya Das. I also had the pleasure of receiving

advice from Richard Waldinger, Todd J. Green, David Maier, Ellen Spertus, Eve Menger-

Hammond, and the esteemed members of my dissertation committee: Bertram Ludäscher,

Premkumar Devanbu, and Jim Quinn. I would especially like to thank my frequent co-

author Shawn Bowers, and my advisor Bertram Ludäscher both of whom spent incredible

amounts of time and effort helping me along with the work in this thesis. Finally, I’d like to

iv

acknowledge the support, patience, and frequent assistance of my wonderful wife, Kirsten

Menger-Anderson.

v

Contents

List of Figures ix

List of Tables xii

1 Introduction 1
1.1 Motivation . 1
1.2 Scenarios . 2

1.2.1 Data Integration . 2
1.2.2 Metadata Curation . 6
1.2.3 Taxonomy Merging . 7
1.2.4 Inference . 8

1.3 Domain Description . 8
1.4 Outstanding Problems . 9
1.5 Current Solutions . 11
1.6 Goals and Contributions . 12
1.7 Thesis Structure . 12

2 Preliminaries 14
2.1 Notation . 14
2.2 Definitions . 15

2.2.1 Sets, Partial Orders, Lattices, and Power Sets 15
2.2.2 Graphs and Trees . 16
2.2.3 Formal Languages . 16

3 Formal Modeling of the Domain 19
3.1 Definitions . 19
3.2 Basic Operations . 24
3.3 Formalized Questions . 28
3.4 Contributions and Future Work . 32

4 Taxonomy Alignment 33
4.1 Overview and Objectives . 33

4.1.1 Prior Work . 33
4.1.2 Goals and Outcomes . 36

4.2 Monadic First-Order Logic (MFOL) . 37

vi

4.3 Formalizing Taxonomies as Monadic First-Order Logic Constraints 37
4.3.1 Formalizing Hierarchical Constraints (≤isa) 37
4.3.2 Formalizing LT : The Language of Taxonomic Constraints 39

4.4 Formalizing Articulations as Monadic First-Order Logic Constraints 47
4.5 Combining ≤isa, LT , and LA into Ltax . 48
4.6 Applying the CleanTax Framework . 48

4.6.1 Small-Scale Applications of CleanTax 48
4.6.2 A Large-Scale Application of CleanTax 55
4.6.3 Modularization via Connected Subgraphs 59

4.7 Contributions and Future Work . 61

5 Optimizations 63
5.1 Overview and Objectives . 63
5.2 Reducing the Number of Proof Obligations 63

5.2.1 GTC Lattice Optimization. 64
5.2.2 R32 Lattice Optimizations . 65
5.2.3 R32 Lattice Optimization Results . 66
5.2.4 Summary of Lattice Optimizations 72

5.3 Language Optimizations . 72
5.3.1 Expressive Power . 72
5.3.2 Complexity . 73
5.3.3 Description Logics . 74
5.3.4 Propositional Logic . 76
5.3.5 R28

5 : A Tractable Subset of RCC-5 78
5.3.6 Optimization Results . 79

5.4 Parallelization . 81
5.5 Contributions and Future Work . 82

6 Merging Taxonomies 83
6.1 Overview and Objectives . 83
6.2 Related Work . 84
6.3 Desiderata . 86

6.3.1 Desiderata for Merge Results . 86
6.3.2 Desiderata for Merge Operations . 90

6.4 Taxonomy Merging in CleanTax . 91
6.5 Experiments and Discussion . 94
6.6 Comparison to Related Systems . 96
6.7 Conclusion . 97

7 Merging Taxonomically Classified Data 98
7.1 Introduction . 98
7.2 Basic Approach . 102
7.3 Framework . 105
7.4 Merging Data Sets . 111

7.4.1 Merge Compatibility and Absence Closure 111

vii

7.4.2 The Naive Basic Relation Merge Algorithm 112
7.4.3 General Basic Relation Merge (BRM-G) 113
7.4.4 The Basic Relation Merge for Unambiguous Data Sets (BRM-U) . . 116
7.4.5 Merging under Disjunctive Relation Uncertainty 117

7.5 Evaluation . 118
7.6 Towards a Best-Effort Merge of Taxonomically Organized Data 121

7.6.1 Introduction . 121
7.6.2 Approach . 122
7.6.3 Some Challenges for the Best-Effort Merge 126

7.7 Related Work and Conclusion . 127

8 Implementations 130
8.1 Overview and Objectives . 130
8.2 Features Common to All Implementations 131

8.2.1 Input Formats . 131
8.2.2 Output Formats . 132

8.3 Python . 132
8.4 Workflows . 133

8.4.1 Rationale for Workflow Implementation 134
8.4.2 Functional Representation of CleanTax 134
8.4.3 Basic Entities . 134
8.4.4 List Types . 135
8.4.5 Complex Types . 136

8.5 Basic Operations . 137
8.6 Complex Operations . 138
8.7 Contributions and Future Work . 140

9 Possible Extensions: Explanations, Repairs, and Uncertainty 142
9.1 Overview and Objectives . 142
9.2 Explanations . 143

9.2.1 Prior Work . 143
9.2.2 Requirements . 144
9.2.3 Initial Results . 146
9.2.4 Future Work . 148

9.3 Repairs . 148
9.3.1 Prior Work . 149
9.3.2 Future Work . 150

9.4 Uncertainty . 150
9.4.1 Uncertainty Metrics . 151
9.4.2 Reducing Uncertainty . 152
9.4.3 Using Dataset Merges to Guide Uncertainty Reduction 154
9.4.4 Visualizations . 155

9.5 Additional Research and Development . 155
9.6 Conclusion . 156

viii

Bibliography 158

A Formal Languages and Proofs 174
A.1 Formal Languages . 174

A.1.1 First-Order Logic (FOL) . 174
A.1.2 The Syntax and Semantics of Monadic First-Order Logic 176
A.1.3 The Syntax and Semantics of AL . 177

A.2 The Maximal Tractable Subalgebra R28
5 . 178

A.3 Implementation Details . 178
A.3.1 The CleanTax Input File . 178
A.3.2 Output Formats . 182
A.3.3 CleanTax Command-Line Options 186

A.4 Proofs . 188
A.4.1 Automated Reasoning Examples for Figure 1.3 189
A.4.2 Inconsistent Taxonomies and Mappings: Figure 4.5 190

ix

List of Figures

1.1 Predicted distribution for Anhinga melanogaster according to (a) Clement’s
Birds of the World, 4th edition [Cle91] and (b) Clement’s Birds of the World,
5th edition [Cle01] . 4

1.2 Simple examples of articulation inconsistency (a) and uncertainty (b). Ar-
ticulations between taxonomies are marked with a dashed line. 6

1.3 Possible questions about articulations between taxonomies 7

3.1 Example partial orders. Capital letters are taxon names, lowercase letters
are instances of those taxa. 20

4.1 The 5 basic relations: (i) N ≡ M , (ii) N (M , (iii) N) M , (iv) N ⊕M ,
and (v) N !M . 40

4.2 The R32 lattice. Each node represents one of the R32 relations. The power set
of B5 induces the complete lattice shown here. The top element {≡,(,),⊕,!}
represents a complete lack of knowledge about the relationship between two
taxa. Each layer-1 node represents one of the B5. Nodes in between represent
some level of uncertainty about the relationship between two taxa. 43

4.3 Equivalence between (a) two taxonomies, (b) given articulations, (c) repre-
sented in Ltax1 formulas. 49

4.4 Inference of new articulations from taxonomies (a), articulations from Peet
(b), and formulas in Ltax1 (c) . 51

4.5 An alignment that is inconsistent under the non-emptiness, sibling disjoint-
ness, and coverage constraints. 53

4.6 Basic CleanTax Methodology . 57
4.7 Algorithm A0 . 58
4.8 Inconsistent set of taxonomies with articulations. Dashed lines are expert

articulations. 60

5.1 A lattice of three global taxonomic constraints (GTCs): non-emptiness N,
sibling disjointness D, and coverage, C. When more than one GTC is applied
to a taxonomy, the relevant abbreviations are concatenated (e.g., ND when
both non-emptiness and sibling disjointness are applied.) 64

5.2 Calculating gtcSet in A . 65
5.3 Finding all relations implied by a mir relation 67

x

5.4 Finding the mir between two nodes based on the truth value of the five
layer-4 relations. 67

5.5 Algorithm A↓min . 68
5.6 Algorithm A↑min . 69
5.7 The populated relation lattice shows, for each relation under the N GTC, the

number of times the relation was true according to the A↓min optimization,
the number of times it was found true using a reasoner, and the number of
times the relation was the mir. 71

5.8 Time in seconds to determine RCC-deductive closure for the 75 sub-taxonomies
under the N GTC for the unoptimized monadic logic, optimized monadic
logic, and RCC-algebra reasoners. 79

5.9 Time in seconds to determine RCC-deductive closure for the 75 sub-taxonomies
under the N GTC for the optimized monadic logic, and RCC-algebra reasoners. 80

5.10 Time in seconds to determine RCC-deductive closure for the RCC-algebra
using large alignments under the N GTC. 81

6.1 Given the alignment in (a), the merge in (b) violates all the described desider-
ata, except for D5 (closure). The merge in (c) shows a violation of D5. . . . 86

6.2 Projecting Taxonomy 1 from the Merge. 88
6.3 Using the Projection. 89
6.4 Merging with and without fusing equivalent taxa. 91
6.5 Merging Ranunculus hispidus under different assumptions. For clarity, the

disjointness relations between taxa in (c) are not shown. See text for further
detail. 95

6.6 Constraints placed on taxonomies before the merge may not apply to the
result of the merge. 95

6.7 Comparing merges for the taxonomies in (a) under the parent-coverage con-
straint. CleanTax correctly merges taxa C and 3 (b) while the others do
not (c). 97

7.1 Two datasets, with corresponding ontologies and ontology alignments. . . . 99
7.2 (a) A very simple scenario, (b) its initial world set, (c) the reduced possible

world set, (d) and (e) the corresponding merged datasets. 103
7.3 When sibling concepts are disjoint and parents contain no instances not found

in their children, this disjunctive relation containing alignment has two basic
relation interpretations. 118

7.4 Aligned taxonomies T1, T2 with datasets to be merged. 125

8.1 CleanTax Web interface . 133
8.2 Results of a dataset merge in the CleanTax Web interface (notional). . . . 141

9.1 Representing only a subset of the R32 relations in an alignment. The dashed
line represents an inferred ≡ relation. 146

9.2 Graphical representation of the proof that buttercup10517) buttercup10521 .157

xi

A.1 The Extended Backus-Naur form for the CTI File 183

xii

List of Tables

1.1 Dataset with abundance counts by observer O1 3
1.2 Dataset with abundance counts by observer O2 3

4.1 LMFOL rules for Figure 4.3 plus Non-Emptiness, Sibling Disjointness, and
Coverage constraints . 50

4.2 Prover9’s proof of the query in Figure 4.4: Is Benson’s Ranunculus ari-
zonicus var. chihuahua contained in Kartesz’s Ranunculus arizonicus? . . 52

4.3 New mir relations found under the two consistent GTCs. 59
4.4 New mir relationships for each GTC combinaton in the 75 sub-taxonomies

that are consistent under the NDC-GTC combination. 61

5.1 Impact of optimizations on deductive closure under the non-emptiness (N)
GTC. 70

5.2 Impact of optimizations on the deductive closure under the NDC LTA for 75
sub-taxonomies. 70

5.3 Bennett’s [Ben94] propositional representation of B5 77
5.4 Some formal languages and their complexity 82

6.1 Comparing CleanTax to OntoMerge, Chimæra, and iPrompt 96

7.1 Three possible merges of the datasets in Figure 7.1. 101
7.2 A monadic logic encoding of articulations of the form A◦B where ◦ ∈ {≡,(

,),⊕, !}. This encoding applies when translating datasets into logic. When
translating ontologies and articulations into logic for the purpose of checking
their consistency or merging the ontologies, use the encoding in Chapter 4. 109

7.3 Monadic logic rules demonstrating the possibility of the dataset in Fig. 7.2(d).113
7.4 Possible worlds for Fig. 7.1 with just its biological attribute context and

its data context. (a) shows a merge representing the (ambiguous) straight-
forward union of the datasets, (b) shows the PWS of unambiguous worlds.
Tables (c) and (d) represent unambiguous merged datasets derived from the
PWS. 115

7.5 PWS for Section 7.4.5(a) and two datasets derived from the PWS: world 5
in (b) and world 15 in (c). 119

xiii

7.6 Average run times in seconds for the naive algorithm and two versions of the
BRM algorithm using datasets of between 3 and 9 concepts in two conditions:
(a) where the dataset contains basic relation uncertainty, and (b) where
the input datasets do not contain basic relation uncertainty. Run times in
seconds for larger datasets using the BRM-U algorithm are shown in (c).
The average number of worlds generated by datasets with mixed relations is
shown in (d). 120

7.7 Two possible merges (a), (b) of the datasets in Figure 7.4. A single best-effort
merge is shown in (c). 126

A.1 The maximal tractable subalgebra R28
5 : only relations marked “•” are in R28

5 . 179

xiv

1

Chapter 1

Introduction

1.1 Motivation

Humans classify, and taxonomies are one of the most natural forms of classification. Tax-

onomies pervade our lives, from the Dewey Decimal system of book classification, to busi-

ness org-charts, to biological taxonomies used to define the tree of life. Taxonomies are

prevalent in science and engineering, where data are often organized hierarchically. Be-

cause taxonomies are “views” on data, different taxonomies organizing the same set of data

often arise due to changing domain information or differing expert opinion. These varying

taxonomies can make data integration difficult, especially when data are distributed or

organized using different but related schemas. Integrating data organized by alternative

taxonomies requires, in addition to the given taxonomies, a set of articulations indicating

how the concepts (taxa, classes) in the different taxonomies relate to one another. A set

of taxonomies and articulations among their concepts is called an alignment. The process

of discovering an alignment given a set of taxonomies is called the taxonomy alignment

problem.

Taxonomies and articulations between them have been created in many domains. For

example, in biology, a recent analysis of treatments of the plant genus Ranunculus [Pee05]

considered 9 taxonomies, covering 654 concepts (called taxa in biology) and 704 articula-

1.2. Scenarios 2

tions. In education, [MW82] compared taxonomies of postsecondary-education institutions

from three different institutions, judging some taxonomies as “more efficient” classifiers. In

library sciences, a number of mappings between the Dewey Decimal and Library of Congress

taxonomies for literature subjects have been created (e.g., [wik07, que03]).

Taxonomies can be large, potentially necessitating a great number of articulations. For

example, [AGY05] compares three Web directories (Google, Looksmart, and Yahoo) to

analyze taxonomy alignment systems. Each directory has hundreds of thousands of nodes.

A node-by-node pairwise comparison of Google and Looksmart, for example, yields almost

300 billion potential articulations.

The research described here addresses reasoning about taxonomies and articulations

drawn between concepts in multiple taxonomies. Topics within this focus range from in-

vestigations into modeling taxonomies and articulations, the use of automatic reasoners

to detect inconsistencies and uncertainty introduced by articulations, optimizations for

calculating the deductive closure of a set of taxonomies and articulations, mechanisms for

merging taxonomies, and methods for merging datasets that have been annotated to aligned

taxonomies.

1.2 Scenarios

1.2.1 Data Integration

Consider a biologist faced with combining species occurrence data from multiple studies.

Species are organized hierarchically, and the definitions of species names change over time,

so datasets using different biological taxonomies may classify species differently [KKP05].

If the data are classified using well-known taxonomies, and an expert has indicated how

concepts in the various taxonomies relate, it may be possible to automatically integrate the

data. Before this is possible, the articulations between the taxonomies must be drawn.

To create the articulations, a metadata curator must consider multiple taxonomies and

draw the articulations between their concepts. While creating articulations between these

1.2. Scenarios 3

Species Count Site Transect Date

Ranunculus arizonicus (Benson, 1948) 30 1 1 January 1, 2005
Ranunculus acriformis (Benson, 1948) 12 1 1 January 1, 2005
Ranunculus arizonicus (Benson, 1948) 8 1 2 January 1, 2005

Table 1.1: Dataset with abundance counts by observer O1

Species Count Site Transect Date

Ranunculus arizonicus (Kartesz, 2004) 6 1 1 June 22, 2005
Ranunculus aestivalis (Kartesz, 2004) 18 1 1 June 22, 2005
Ranunculus glabberimus (Kartesz, 2004) 3 1 2 June 22, 2005

Table 1.2: Dataset with abundance counts by observer O2

taxonomies, the curator will want to know, (i) when a newly proposed articulation leads

to an impossible situation, (ii) if so, why, and how the inconsistency may be repaired, (iii)

if the proposed articulations entail other previously unknown articulations, and (iv) if an

unexpected articulation is entailed, how it was derived.

The answers to these questions depend in part on the taxonomies being compared.

Unfortunately, taxonomies are frequently under-specified, described only by the subsump-

tion relationships of the concepts. Taxonomies often carry additional unstated constraints,

such as that taxa subsumed by a common parent should be disjoint. These constraints

may impact the logical consistency of articulations, as well as the entailment of additional

articulations. In general, an articulator will prefer articulations that minimize ambiguity,

choosing unambiguous articulations such as “concept A and concept B are congruent” over

ambiguous ones, such as “concept A and concept B are either congruent, or A is a subset

of B.” Given this goal, the articulator may want to assume that the taxonomies in question

follow certain constraints. Once the articulations have been created, they may be checked

for validity and stored for later use.

Example 1.1. Imagine attempting to predict the geographic distribution of a taxon, for

example the species Anhinga melanogaster. The Global Biodiversity Information Facility

(GBIF) provides a good initial source of locality information for this taxon. Figure 1.1 (a)

1.2. Scenarios 4

(a) (b)

Figure 1.1: Predicted distribution for Anhinga melanogaster according to (a) Clement’s
Birds of the World, 4th edition [Cle91] and (b) Clement’s Birds of the World, 5th edi-
tion [Cle01]

shows a species range prediction for Anhinga melanogaster generated using 100 iterations

of the GARP algorithm run within a Kepler workflow [LAB+06]. Lighter shades represent

greater probability of presence.

Note that there appears to be a low probability of finding Anhinga melanogaster in

South Africa, central Australia, western India, Pakistan and Afghanistan. However, a

recent version of Clement’s Birds of the World lumps the species Anhinga rufa and Anhinga

novaehollaniae into Anhinga melanogaster. An adherent to this taxonomy would merge

the locality data of these three species, resulting in the species range prediction shown in

Figure 1.1 (b). Knowing the relationships between different versions of the same taxon has

a clear impact on predictions about that taxon.

Example 1.2. Consider two datasets involving abundances of various species of the plant

genus Ranunculus (which contains the buttercups), in two transects of a given locality.

The first dataset (Table 1.1) represents observations of Ranunculi taken by a person O1

who used a field guide based on Benson, 1948. The second dataset (Table 1.2) represents

observations of Ranunculi taken in the same location, by a different person O2, six months

later. Observer O2 used a field guide based on Kartesz, 2004. Assume that both studies

attempted to document all species of Ranunculus observed in each locality.

1.2. Scenarios 5

We can ask a number of queries over these datasets, e.g., “What was the average num-

ber of Ranunculus arizonicus observed in Transect 1 of LTER Site 1?” Observer O1 (using

Benson, 1948) found 30 examples of Ranunculus arizonicus in Transect 1, while O2 (using

Kartesz, 2004) found 6 examples of Ranunculus arizonicus in the same spot. Given no in-

formation about the relationship between Benson’s and Kartesz’s concepts of R. arizonicus,

we cannot safely average over these two datasets:

(i) It may be that both O1 and O2 would have agreed that every observed R. arizonicus

was in fact an R. arizonicus. We could assume this if Benson’s and Kartesz’s concepts

of R. arizonicus were known to be equivalent. In other words, every plant classified by

Benson, 1948 as R. arizonicus would have also been classified by Kartesz, 2004 as R.

arizonicus and vice versa. In this case, the answer to our query is that on average 18

(= 30+6
2) R. arizonicus were seen in transect 1.

(ii) Alternatively, Benson’s and Kartesz’s concepts of R. arizonicus could be so different

that O2 would have classified every R. arizonicus of O1 as some other species, and similarly,

O1 would have classified every R. arizonicus of O2 as another species. In this case, the

abundance data for R. arizonicus in the two datasets refer to two distinct plant species,

rendering an average of the two abundances meaningless.

(iii) Finally, assume that based on scientific literature, we may ascertain that all exam-

ples classified as R. arizonicus by Kartesz, 2004 would have also been classified as R. ari-

zonicus by Benson, 1948, but not vice versa, denoted1 R. arizonicusK04 (R. arizonicusB48.

Furthermore, assume there are no other types of Ranunculus considered by Kartesz, 2004

to be R. arizonicus. In this case, we could consider the numbers in the two datasets to

be comparable according to the definition of Benson, 1948. Thus, we could answer the

query by concluding that on average 18 examples of R. arizonicusB48 were spotted in 2005.

However, we cannot state an average in terms of the Kartesz, 2004 definition of R. ari-

zonicus because some of the 30 R. arizonicusB48 observed by O1 may not be considered

R. arizonicusK04.
1The superscripts K04 and B48 indicate the authorities Kartesz, 2004 and Benson, 1948, respectively.

1.2. Scenarios 6

T1 T2

A

B C

D

≡

(a)

T1 T2

A

B

C

D
⊆

(b)

≡

Figure 1.2: Simple examples of articulation inconsistency (a) and uncertainty (b). Articu-
lations between taxonomies are marked with a dashed line.

Clearly, if we do not know the relationship between Benson’s and Kartesz’s concepts of

R. arizonicus, the only accurate answer to the query is that the average number is uncertain

because the observers collecting the data sets used different identification guides. However,

knowing the relationship between these concepts affords a more precise answer.

1.2.2 Metadata Curation

Imagine an expert creating articulations between concepts in a pair of large taxonomies.

Given a set of assumptions about the taxonomies, it can be quite easy to state articulations

that are logically impossible. For example, if all concepts are assumed to contain at least one

instance, and each parent concept cannot contain any instances not also contained in one

of its child concepts, and sibling concepts contain disjoint instances, then the articulations

shown in Figure 1.2 (a) are impossible. This may be seen by positing an instance of

concept B. Any instance of B must also be an instance of A. The equivalences between

concepts A, C, and D imply that any instance of A must also be an instance of C. This

means that the posited instance is a member of both B and C concepts, violating sibling

disjointness. A metadata curator would want to know if he or she has created an inconsistent

situation, and if so, what caused the inconsistency. Knowing the cause of an inconsistency,

a metadata curator would probably also want to know how to remove the inconsistency

without introducing other inconsistencies.

In a somewhat different scenario, a metadata curator might create articulations that

1.2. Scenarios 7

T1 T2

A

B C

D

E

≡

⊆

Given Is C ⊆ E implied?
T1 T2

Is C ≡ D possible? Is A ≡ E possible?

A

B C

D

E

T1 T2
≡

⊆ ⊆
?

A

B C

D

E

≡

⊆

≡
?

A

B C

D

E

T1 T2
≡

⊆

≡
?

(a) (b) (c) (d)

Figure 1.3: Possible questions about articulations between taxonomies

leave some uncertainty about the relationship between various concepts in the articulated

hierarchy. For example, in Figure 1.2 (b), the relationship between taxa A and C is unclear.

The two concepts may contain the same instances, or one may contain a subset of the other,

or the concepts may overlap. A metadata curator will probably want to know when such

uncertainty is introduced, why it is introduced, and how it may be removed.

1.2.3 Taxonomy Merging

Taxonomies need to be merged whenever organizations combine. For example, many busi-

nesses are now filing financial statements to their home governments using the Extensible

Business Reporting Language (XBRL) [xbr] format. XBRL is an XML-based standard that

contains taxonomies for financial reporting. XBRL was designed for businesses to create

their own taxonomies, and different countries have embraced different standard taxonomies

within the XBRL framework. When corporations merge, the resulting company will want

access to the financial statements of the child corporations. This might require the creation

of merged XBRL taxonomies.

1.3. Domain Description 8

1.2.4 Inference

Given some articulations, a metadata curator might want to know what other articulations

are implied. This serves two purposes. First, automatic inference of articulations means

less work for the curator. Second, surprising articulations may be a cause for celebration,

if something new has been learned, or a cause for concern, if an unexpected articulation

indicates an error in other articulations or in the taxonomies themselves.

Automatic inference of articulations depends on the taxonomies, a starting set of artic-

ulations, and additional assumptions about how taxa in the taxonomies relate. Consider

the abstract taxonomies in Figure 1.3. Figure 1.3(a) depicts two taxonomies T1 and T2 and

a pair of articulations. In T1, B and C are child taxa of A, and in T2, E is a child of D. The

articulations use set-theoretic notation to state that A and D are equivalent (A ≡ D means

all elements of A are also elements of D and vice versa), and B is a subset of E (B ⊆ E

means all elements of B are also elements of E, but not necessarily the other way around).

Given these taxonomies and the relations between them can we deduce that C ⊆ E is

implied (Figure 1.3(b))? Is it consistent to assert C ≡ D, or E ≡ A (Figures 1.3(c) and

1.3(d), respectively)? The answers to these questions depend on various (sometimes latent)

assumptions about T1 and T2. Once we spell out these additional taxonomic constraints in

logic, all such questions have unambiguous answers (see Appendix A.4.1).

1.3 Domain Description

Traditionally, taxonomies have been defined as a partial ordering of concepts where the

ordering relation denotes some sort of “inclusion” relation [Bra83]. The partial ordering

relation is often called an isa relation, and represents a rule of the form: A isa B means

that if instance x is an example of A, then x is also an example of B. In biological taxonomies,

this translates to rules like, “if Fido is an instance of Canis lupus, then Fido is an instance

of Canis.” In a phylogeny, the rule might be “if Fido is an instance of the things descended

from ancestor A, then it is also an instance of things descended from ancestor B.” In a

1.4. Outstanding Problems 9

business org-chart, the rule might be “if employee x is a member of the software engineering

department, then employee x is also a member of the engineering department.”

This definition is very general. Partial orders may be strict (the ordering relation

is irreflexive, asymmetric, and transitive) or non-strict (the ordering relation is reflexive,

transitive, and antisymmetric). Some taxonomies permit multiple inheritance while others

do not. In some taxonomies, child concepts partition their parents, while in others, parent

concepts may contain instances not contained in their children.

In addition to being too general, the definition of a taxonomy as a partial order does

not describe how taxonomies are actually defined. Taxonomies may be defined entirely as

graphs, with edges representing inclusion relations and nodes representing taxonomic con-

cepts. In other cases, such as in Formal Concept Analysis (FCA) [GW99], taxonomies are

defined using the properties of the instances of the concepts. In yet other cases, taxonomies

are defined using characteristics of the concepts, without reliance on instances. Sometimes

a combination of these occurs [CdQ06].

When given two or more taxonomies organizing similar data, it is natural to wonder how

the taxonomies relate. One method of comparing taxonomies is to describe relationships

between concepts in each taxonomy (the articulations). The vocabulary used to describe

these articulations can be very simple or quite complex, depending on the language used

to express the articulations, and the taxonomies themselves.

In summary, in a given setting, the taxonomies and articulations may be syntactically

heterogeneous (not expressed in the same language), terminologically heterogeneous (the

“same” entities might have different names), and conceptually heterogeneous [BBG01] (e.g.,

the taxonomies about the “same” concepts might cover different parts of the world).

1.4 Outstanding Problems

Given this context of taxonomies and articulations between them, a number of questions

arise. These questions may be thought of as use cases for a system that helps build and

1.4. Outstanding Problems 10

work with taxonomies and articulations. These questions are stated broadly here, but will

be formalized later. The questions below are loosely grouped by topic. The chapters of this

dissertation that address the given group of questions follow the group heading.

Questions about Representation and Reasoning [Chapter 3, Chapter 4, Chapter 5]

Question 1.3 (Representation). How are taxonomies and relations between entities in

different taxonomies represented?

Question 1.4 (Representation of uncertainty). How should uncertainty in the relationship

between two concepts be represented?

Question 1.5 (Consistency of taxonomies). Given a formal definition of taxonomy, is a

given set of concepts and relations a valid taxonomy?

Question 1.6 (Models). Does a set of instances and information about how those instances

are sorted into the concepts of a taxonomy describe a model that satisfies a given taxonomy?

Question 1.7 (Consistency of alignment). Given a pair of consistent taxonomies, and

relations between their concepts, are there any contradictory assertions?

Question 1.8 (Inference). Are any unstated relations implied?

Questions about Explanations [Chapter 6, Chapter 7, Chapter 9]

Question 1.9 (Explanation of Inconsistency). From where do contradictions arise?

Question 1.10 (Explanations of discovered relations). If unstated relations are discovered,

how are they derived?

Question 1.11 (Interestingness). Which discovered relations are interesting, and how does

one define interestingness?

Question 1.12 (Minimality). Are the given relations within a taxonomy or between ar-

ticulated taxonomies a minimal set, or may some be removed while entailing the same

relations?

1.5. Current Solutions 11

Question 1.13 (Maximal/minimal consistent/inconsistent subset). What are the maximal

consistent or minimal inconsistent subsets of concepts and relations in single taxonomies

or articulated taxonomies?

Question 1.14 (Merge). Is there a single canonical representation of the combination of

two or more taxonomies, given relationships between them?

Question 1.15 (Data Integration). Can a taxonomic alignment be leveraged to merge sets

of data that draw their terms from the taxonomies?

1.5 Current Solutions

The questions above span several topics: representation, taxonomy alignment, taxonomy

merging, and data integration. Each of these topics has received attention in a number

of different domains, and literature reviews for each topic will be provided in the relevant

chapters. Here, however, I will describe some of the key differentiators between different

approaches to alignment, and merging problems in general.

The first basic differentiator is the type of information used in the aforementioned

operations. Some techniques rely on the existence of instances [SM01a], versus those that

do not take instances into account, such as PROMPT [NM03]. Some techniques rely on a

lexical analysis of the names of entities [DR02], while others focus on structural elements

such as the relations between concepts [GYS07]. Like [GYS07], the current research focuses

entirely on the structure of the relations between concepts in the taxonomies being aligned.

This focus may be seen as a point of departure from which investigations into the effect of

instances and lexical similarities may be investigated.

Another key differentiator between solutions involves the languages used to express the

data. For example, in [ST05] ontologies are represented in a modified description logic, and

relations between concepts in the ontologies may be either subsumption, equivalence, or dis-

jointness. In [GYS07], on the other hand, ontologies are represented in propositional logic,

and relations between concepts are modeled as implication, equivalence, and disjointness.

1.6. Goals and Contributions 12

A third example is [MHH+01], which models relational databases and XML documents in

a nested relational model and supports arbitrary n:m transformations between concepts in

the inputs. In this dissertation, taxonomies will be represented in a variety of logics, in-

cluding first-order logic, description logic, the region connection calculus, and propositional

logic.

1.6 Goals and Contributions

The goal of the proposed research is to formally define taxonomies and articulations between

them, and describe algorithms for performing a number of operations on multiple articu-

lated taxonomies. Among these operations are inferring unstated articulations, explaining

the inferences, explaining inconsistencies in taxonomies and articulations, quantifying un-

certainty in articulated taxonomies and aiding in the reduction of that uncertainty, merging

articulated taxonomies, and merging data sets that have been annotated to aligned tax-

onomies. In order to support these operations, a number of logics (e.g., first-order logic,

description logic, propositional logic) will be investigated in terms of their expressiveness

in this context and the efficiency of performing the operations. As taxonomies can be quite

large, most of the operations will require optimizations. To make a system implementing

the operations useful, visualizations of the taxonomies, articulations, and products of the

operations (such as a merged taxonomy) will be necessary. Finally, the system must be

implemented, and three different implementations are described here: a traditional object-

oriented implementation; an implementation like the first, but optimized for running in a

Grid environment; and a workflow-based implementation.

1.7 Thesis Structure

This dissertation is organized as follows:

Chapter 2 introduces ideas and notations that will hold throughout the dissertation.

1.7. Thesis Structure 13

Chapter 3 formalizes many of the notions used throughout the dissertation, including tax-

onomies, articulations, and alignments. Chapter 4 instantiates the formalization of taxon-

omy alignment using a subset of first-order logic called monadic first-order logic and applies

the formalization to a real-world data set. Chapter 5 discusses optimizations useful for per-

forming the tasks in Chapter 4, including optimizations to reduce the number of proofs

necessary, and optimizations involving less expressive logics. Chapter 6 discusses how ar-

ticulated taxonomies may be merged together to form a unified taxonomy useful in many

data integration contexts. Chapter 7 describes algorithms for merging presence/absense

data sets that use vocabularies drawn from aligned taxonomies. Chapter 8 describes three

implementations of the CleanTAX framework: a traditional object-oriented implementa-

tion; an implementation like the first, but optimized for running in a Grid environment; and

a workflow based implementation. Chapter 9 sums up the contributions of this work and

outlines future work on explaining inferences and inconsistencies, repairing inconsistencies,

judging the interestingness of new articulations, and reducing uncertainty in alignments.

14

Chapter 2

Preliminaries

This chapter describes the notation and foundational terms used throughout the rest of

this work. It is meant primarily as a reference.

2.1 Notation

This dissertation uses the following conventions. All of the terms below are defined in the

subsequent definition section.

Constants a, b, c, . . .
Variables x, y, z, . . .
Nodes, predicates, tuples N,M, . . .
Sets N,M, . . .
First-order formulas φ, ψ, . . .
Interpretations, structures I,J , . . .
Languages L,M, . . .

2.2. Definitions 15

2.2 Definitions

2.2.1 Sets, Partial Orders, Lattices, and Power Sets

Sets. The following definitions are largely taken from [DP02]. A set M is a collection of

distinct objects m (which are called the elements or instances of M). Sets may be defined

extensionally using a list of instances (called an extent), or intensionally using a rule or

semantic description (e.g., the set of prime numbers). The binary relation ∈ is used to

indicate that an element is “in” a set or is a “member” of the set. One set N is a subset of

another set M (N ⊆M) if for all x, if x ∈ N then x ∈M.

Partial orders. Given a set M, a partial order on M is a binary relation 6 such that, for

all x, y, z ∈M: (i) x 6 x (reflexivity), (ii) x 6 y and y 6 x implies x = y (antisymmetry),

and (iii) x 6 y and y 6 z implies x 6 z (transitivity). An ordered set (M,6), is a set

equipped with a relation ordering the set. If M is an ordered set, we say that M has a

bottom if there exists a ⊥ ∈M, which has the property ⊥ 6 x for all x ∈M. Similarly, M

has a top if there exists a > ∈M with the property x 6 > for all x ∈M.

Supremum, infimum, meet, and join. Let M be an ordered set and let N ⊆M. An

element m ∈M is an upper bound of N if n 6 m for all n ∈ N and Nu is the set of all upper

bounds of N (also called N upper). If Nu has a least element x then x is the least upper

bound (or supremum) of N. The terms lower bound, N lower (Nl) and greatest lower bound

(or infimum) are defined dually. If two elements, x, y ∈ M have a least upper bound, we

write x ∨ y, read as “x join y.” Similarly, if two elements, x, y ∈M have a greatest lower

bound, we write x ∧ y, read as “x meet y.” If a least upper bound for a set M exists, we

write
∨

M, read “the join of M.” Similarly, if a greatest lower bound for a set M exists,

we write
∧

M, read “the meet of M.”

Lattices. A lattice is a non-empty ordered set in which for all x, y ∈M, x ∨ y and x ∧ y
exist. If every subset N,N ⊆ M has a meet and a join, we say the set M is a complete

2.2. Definitions 16

lattice.

Power sets. Given a set M, the power set P(M) (also denoted by 2M) is the set of all

subsets of M. Ordering the elements of a power set with respect to inclusion results in a

complete lattice.

2.2.2 Graphs and Trees

Graphs and edges. A directed graph consists of a finite nonempty set N of nodes and a

finite set E ⊆ N×N of directed edges. A directed edge E = (N,M) is an ordered pair of

nodes, where N is said to be the predecessor of M and M is the successor of N . A directed

edge E = (N,M) is also said to be incident with nodes N and M .

Walks and paths. A walk from node Ni to node Nj in a graph is an alternating sequence

[Ni, Ei+1, Ni+1, Ei+2, . . . , Nj−1, Ej , Nj] of nodes and edges in the graph such that Ek =

(Nk−1, Nk) for k = i + 1, . . . , j. A walk is closed if its first and last nodes are the same,

and open if they are different. An open walk is also called a path.

Connected and acyclic graphs. A graph G = (N,E) is connected if for every pair of

nodes N,M ∈ E there is a walk between N and M. A graph is acyclic if no node N takes

part in a closed walk.

Trees and roots. A graph is rooted if there is a distinguished node R ∈ N called the

root of the graph such that for all nodes N ∈ N there is a path in G from the root R to

the node N . A tree is a connected, acyclic graph.

2.2.3 Formal Languages

A formal language is described by a syntax and a semantics. The syntax of the language

defines a set of well formed formulas (wffs, often abbreviated as just formulas) that are

legal in that language. The wffs are formed by defining a set of symbols, which define the

2.2. Definitions 17

alphabet of the language, and a set of formation rules, which describe how the symbols may

be combined to form formulas. The semantics provides a meaning for those formulas.

Example 2.1 (A simple formal language). As an example, here is a simple formal language

L0

Syntax. The language L0 is built from an alphabet consisting of (i) a set of variables V =

{x, y, z, . . . }, (ii) a single connective between formulas →, and (iii) a signature S = R∪C,

involving sets of predicate symbols R (R1, R2, . . .) and constants C (c1, c2, . . .). In L0 each

R ∈ R has an arity of 1. However, in most formal languages, each R ∈ R will have a

unique arity ≥ 1.

The set T of terms is the least set such that V,C ⊆ T (constants and variables are

terms).

A L0 formula is either an atomic formula R(t), with unary R ∈ R and t ∈ T, or of the

form (ϕ → ψ), where ϕ,ψ are L0 formulas. Parentheses may be omitted when clear from

the context.

Semantics. Fix a signature S = R ∪C. A first-order structure I = (D, I) for S consists

of a domain D and a mapping I, assigning to every constant c ∈ C, and unary predicate

symbol R ∈ R, a domain element cI , and a unary predicate RI ⊆ D, respectively. Since

I interprets (i.e., assigns meaning to) all symbols in S, terms and formulas over S can be

evaluated under I, provided we also map free variables to domain elements via a variable

assignment β : V → D. Let I = (I, β) be an interpretation, i.e., a first-order structure

I with variable assignment β. Formula evaluation is defined inductively as a satisfaction

relation I |= ϕ (“I satisfies ϕ”, “I is a model of ϕ”, “ϕ holds in I”):

I |= R(t) iff I(t) ∈ RI

I |= ϕ→ ψ iff I |= ϕ implies I |= ψ

A formula ϕ without free variables is called a sentence or constraint, and corresponds

2.2. Definitions 18

to a yes/no (boolean) query. In this case, we use I instead of J because the variable

assignment β is no longer needed. Let Φ be a set of constraints. We write I |= Φ if I |= ϕ

for all ϕ ∈ Φ and say “I is a model of Φ.” We write Φ |= ϕ if every model of Φ is also a

model of ϕ, i.e., ϕ is a (logical) consequence of Φ.1

Automated Reasoning. The semantic consequence relation Φ |= ϕ can be “mecha-

nized” using the rules of a calculus. A calculus is based on a provability relation Φ ` ϕ,

stating that ϕ can be derived (formally proven) from the formulas in Φ and the derivation

rules of the calculus. Φ is called consistent if there is no formula ϕ such that both Φ ` ϕ
and Φ ` ¬ϕ; otherwise Φ is inconsistent. A calculus is sound if Φ ` ϕ implies Φ |= ϕ

(everything that can be derived is a consequence), and complete if Φ |= ϕ implies Φ ` ϕ
(every consequence can be derived).

1Note the difference between I |= ϕ and Φ |= ϕ: the former is the satisfaction relation between a
structure (database instance) I and a formula (query) ϕ; the latter is the consequence relation, stating that
all structures I which satisfy Φ also satisfy ϕ. Thus, I |= ϕ is also called formula evaluation (given I),
while the Φ |= ϕ involves “reasoning” (independent of I).

19

Chapter 3

Formal Modeling of the Domain

This chapter lays out the formal foundation for the chapters to follow. It contains definitions

of the terms that will be used throughout the dissertation, and gives formal signatures for

many of the operations that will later be implemented. The chapter concludes by showing

how the terms and operations defined here may be applied to answer many of the questions

in section 1.4.

3.1 Definitions

This section formally defines the terms used in this dissertation.

Definition 3.1 (ISA Hierarchy). An isa hierarchy is a pair H = (N,≤isa) consisting

of a set of taxa N (singular taxon) and a partial ordering relation ≤isa (called a hierar-

chical relation). The partial ordering relation, under a given interpretation, constrains the

interpretation of the taxa in N. These constraints are called hierarchical constraints. An in-

dividual hierarchical constraint may be represented as a pair (N1, N2) meaning N1 ≤isa N2.

The first element of this pair is called the predecessor or child and the second is called the

successor or parent.

Example 3.2 (Example isa Hierarchy).

H = (N,≤isa)

3.1. Definitions 20

N = {Animal,Mammal,Fish,Dog,Trout}
≤isa= {(Mammal,Animal), (Fish,Animal), (Dog,Mammal), (Trout,Fish)}

Given this set of taxa and hierarchical constraints, we can ask whether a given interpre-

tation I satisfies the isa hierarchy H. Consider the following interpretation I of the nodes

in N where a, b, and c are “real world” specimens: AnimalI = {a, b, c},MammalI =

{a, b}, F ishI = {c}, DogI = {c}, T routI = {a, b}. In order for the interpretation to sat-

isfy the isa hierarchy, the ≤isa relation must hold. However, the given interpretation

violates the hierarchical constraints (Dog,Mammal) and (Trout,Fish). For example,

DogI = {c} and MammalI = {a, b} and {c} � {a, b}.

(a) (b) (c)

D
(d)

F
(c,d)

G
(a,b,c,d)

C
(c)

B
(b)

E
(a,b)

A
(a)

H
(e)

I
(e,f)

J
(e,g)

K
(e,f,g)

L
(h)

M
(h,i)

N
(h,j)

O
(h,i,k)

P
(h,i,l)

Q
(h,j,k)

R
(h,j,l)

Figure 3.1: Example partial orders. Capital letters are taxon names, lowercase letters are
instances of those taxa.

This definition of an isa hierarchy as a partially ordered set is sometimes used to define

a taxonomy [Bra83, GW02, Ehr07]. It is, however, a bit too general. For example, the

diagrams in Figure 3.1 are all partially ordered sets. Capital letters mark the names of

the taxa, and lowercase letters mark the instances of each taxon. While (a) is certainly a

taxonomy, not everyone would call (b) or (c) a taxonomy. The following definition affords

more specific definitions of taxonomy.

3.1. Definitions 21

Definition 3.3 (Taxonomy). A taxonomy is a 4-tuple T = (N,≤isa,LT ,TC) consisting of

a set of taxa N, a hierarchical relation ≤isa, a language for expressing constraints between

taxa (and sets of taxa) in the taxonomy LT , and a set of constraints in that language TC.

Note that neither this definition, nor the previous one, includes a notion of taxonomic

extent. While the taxa in Figure 3.1 contain instances, taxonomies (and isa hierarchies)

may be defined without reference to any instances.

The additional taxonomic constraints TC are very general. Taxonomic constraints are

n-ary relations on taxa. For example, a constraint might be a unary relation (e.g., taxon

A has at least one instance), a binary relation (e.g., taxa A and B share no instances), or

something more complex (e.g., the extent of taxon A is the union of the extents of taxa B,

C, and D).

Example 3.4 (Example taxonomy).

T = (N,≤isa,LT ,TC)

N = {Animal,Mammal,Fish,Dog,Trout}
≤isa= {(Mammal,Animal), (Fish,Animal), (Dog,Mammal), (Trout,Fish)}
LT = set theory

TC= {Mammal ∩ Fish = Ø}

Again, one can ask whether a certain interpretation I satisfies the taxonomy T . The

following interpretation satisfies the hierarchical constraints of T but does not satisfy the

taxonomic constraint: AnimalI = {a, b, c},MammalI = {a, b}, F ishI = {b, c}, DogI =

{a, b}, T routI = {b, c}. The violation occurs because Mammal ∩ Fish = {b} rather than

Ø.

Definition 3.5 (Global taxonomic constraints (GTCs)). The difference between an isa

hierarchy and a taxonomy is two elements (LT , TC) that describe relationships between

taxa beyond the hierarchical relation ≤isa. The pair (LT , TC) describes a set of additional

taxonomic constraints. A taxonomic constraint pattern is a second-order formula that

3.1. Definitions 22

applies to a given set of concepts. A global taxonomic constraint is a taxonomic constraint

pattern that applies to all concepts in a given taxonomy. A global taxonomic constraint

identifier (GTCI) is an arbitrary symbol, which, when applied to an isa hierarchy (or a

taxonomy) via some function, generates a taxonomy.

Example 3.6 (Example Global Taxonomic Constraint Identifier (GTCI)). An example

GTCI might be the symbol “sibling-disjointness.” This symbol is meaningless except to a

function (e.g., instantiateGTCI). For example, given an isa hierarchy:

H = (N,≤isa)
N = {Animal,Mammal,Fish,Dog,Trout}
≤isa= {(Mammal,Animal), (Fish,Animal), (Dog,Mammal), (Trout,Fish)}

The function instantiateGTCI(H,“sibling-disjointness”) would create disjointness con-

straints between all children of every taxon that has more than one child in the ≤isa relation,

producing a taxonomy like that described in example 3.4.

Definition 3.7 (Articulation). An articulation [MWK00, MWJ99] is a 4-tuple

A = (N,N,LA, AC) consisting of two sets of taxa (one from each taxonomy), a language for

expressing inter-taxonomic constraints LA and an inter-taxonomic constraint AC in that

language.

This definition is very general and supports many kinds of articulations. For example,

one articulation might state that a taxon in T2 is equivalent to the set difference of another

taxon in T2 and a taxon in T1.

More restrictive notions of articulations will be provided in later chapters.

At times, two taxonomies might refer to taxa with the same name. In these cases, sym-

bols representing the variables used to represent each taxonomy will be used to distinguish

the two taxa by prepending the symbol representing the taxonomy, followed by a period.

Example 3.8. Given two taxonomies with one taxon each, that taxon symbolized by the

symbol P:

3.1. Definitions 23

T1 = ({P}, {}, {}, {})
T2 = ({P}, {}, {}, {})

We can refer to the P in T1 as T1.P and P in T2 as T2.P . This notation will be useful when

describing articulations.

Definition 3.9 (Alignment). An alignment consists of a pair of taxonomies and a set

of articulations between them: Align = (T1, T2,A). An alignment function between two

taxonomies is a partial function which maps taxa in one taxonomy to taxa in the other,

and assigns a relation to the mapping: align : P(N)×T×T ⇀ P(N)×LA. This definition

of taxonomic alignment is very similar to that of ontology alignment in [Ehr07], which in

turn is based on work from [Euz04].

Definition 3.10 (Proof line). A proof line is a 4-tuple, PL = (proof id, ϕ, J,Pc), where

proof id is a label for the proof line; ϕ is a formula; J is a textual justification, in this case

a justification for that step of the proof; and Pc is a set of proof ids representing the proof

lines that contributed to this step of the proof.

This definition permits the creation of proof trees, which will be used to explain infer-

ences.

Definition 3.11 (Proof). A proof P = (PL,L) is a pair consisting of a set of proof lines

PL and a language L under which the axioms in the proof lines can be interpreted.

Definition 3.12 (Proof Result). A proof result PR = ({success, failure}, P) pairs a proof

with a string, either “success” or “failure.” The string “success” means that Φ ` ϕ. The

string “failure” means that no proof was found either because Φ 0 ϕ or because the prover

or calculus employed was not complete.

Definition 3.13 (Consistency Result). A consistency result CR = ({success, failure}, I)

pairs a model with a string, either “success” or “failure.” The string “success” means that

an interpretation I, I |= Φ was found. The string “failure” means that no model was found:

3.2. Basic Operations 24

either because no I such that I |= Φ could be found, or because the model finder or calculus

employed was not complete.

3.2 Basic Operations

Defined here are basic operations used to answer the questions in section 1.4. Some of

the operations require knowledge of the formal language used and the mechanism through

which the calculus of that languages is applied. These parameters are designated by L and

M respectively.

Definition 3.14 (Prove). Given a set of formulas F and a goal formula F , test whether

the goal is implied by the formulas. Formally, does F ` F .

prove(F, F,L,M)→ Proof Result

Definition 3.15 (Check consistency). Given a list of formulas F, check whether the for-

mulas are logically consistent. Formally, is there an I such that I |= F?

checkConsistency(F,L,M)→ Consistency Result

Definition 3.16 (Check model). Given a list of formulas F, check whether a given inter-

pretation, I is a model for those formulas. Formally, does I |= F?

checkModel(I,F,L,M)→ Consistency Result

Definition 3.17 (Formalize Hierarchical Constraints). Render a given set of hierarchical

constraints ≤isa into a set of formulas F in the language L.

formalizeHC(≤isa,L)→ F

Definition 3.18 (Formalize Additional Taxonomic Constraints). Render a given set of

3.2. Basic Operations 25

additional taxonomic constraints, stated in a given taxonomic constraint language LT , into

a set of formulas F in the language L.

formalizeATC(TC,LT ,L)→ F

Definition 3.19 (Formalize Taxonomy). Render a given taxonomy T into a set of formulas

F.

formalizeTaxonomy(T,L)→ F

Definition 3.20 (Formalize Articulations). Render a set of articulations A into a set of

formulas F.

formalizeArticulations(A,L)→ F

Definition 3.21 (Instantiate Global Taxonomic Constraint Identifier). Given an isa hier-

archy H or a taxonomy T and an global taxonomic constraint identifier GTCI, apply the

GTCI and return the resulting taxonomy.

instantiateGTCI(H,GTCI)→ T

instantiateGTCI(T,GTCI)→ T

Definition 3.22 (Calculate All Possible Hierarchical Constraints). Given a taxonomy T

or an isa hierarchy H, return a set of all possible sets of hierarchical constraints.

calculateAllHC(T)→ P(N ×N)

calculateAllHC(H)→ P(N ×N)

This operation returns all possible sets of hierarchical constraints for a taxonomy or isa

3.2. Basic Operations 26

hierarchy, taking into account only the taxa in N.

Example 3.23 (Example application of calculateAllHC operation).

H = (N,≤isa)
N = {A,B}
≤isa= {(B,A)}
calculateAllHC(H)→ {
{},
{(A,A)}, {(A,B)}, {(B,A)}, {(B,B)},
{(A,A), (A,B)}, {(A,A), (B,A)}, {(A,A), (B,B)},
{(A,B), (B,A)}, {(A,B), (B,B)}, {(B,A), (B,B)},
{(A,A), (A,B), (B,A)}, {(A,A), (B,A), (B,B)},
{(A,B), (B,A), (B,B)}, {(A,A), (A,B), (B,A), (B,B)}
}

Note that because ≤isa is a partial order, some of the sets in the power set constrain

some of the taxa to be equivalent. For example, the set of constraints: {(A,B), (B,A)}
can only be a partial order if A = B. This may contradict constraints in TC, or it may be

incompatible with a given interpretation I.

Definition 3.24 (Calculate All Possible Additional Taxonomic Constraints). Given a tax-

onomy T or an isa hierarchy H, return a set of all possible (both satisfiable and not)

additional taxonomic constraints.

calculateAllATC(T)→ TC

calculateAllATC(H,LT)→ TC

This operation returns all well-formed formulas for a given taxonomy according to the

language LT without regard to whether or not any given formula is satisfiable. Unlike the

set of hierarchical constraints derived using calculateAllHC, the set of possible additional

3.2. Basic Operations 27

taxonomic constraints may potentially be infinite, and therefore incalculable. For example,

if the language for expressing ATCs (LT) is full first-order logic, then there are infinite

ways of creating formulas using the taxa in T (e.g., A → A, A → A ∧ A, A → A ∧ A ∧ A
. . .). Throughout this dissertation, several different examples of LT will be presented, and

in each, the set of possible well-formed formulas using a finite set of taxa will be finite.

Definition 3.25 (Calculate All Possible Taxonomies). Given a set of taxa N, an ordering

relation ≤isa, and a language for stating taxonomic constraints LT , return a set of all

possible taxonomies.

calculateAllTaxonomies(N,≤isa,LT)→ T

Definition 3.26 (Calculate All Possible Articulations). Given a pair of taxonomies and

an articulation language LA return the set of all possible articulations, without regard to

whether any given articulation is satisfiable.

calculateAllArticulations(T, T,LA)→ A

This operation returns all well-formed formulas for articulations, given two taxonomies

and a language for expressing articulations. As was the case for calculateAllATC, this may

be incalculable if the language LA permits the construction of infinite well-formed formulas

given two taxonomies.

Definition 3.27 (Calculate All Possible Alignments). Given an alignment, or a pair of

taxonomies and an articulation language LA, return a set of all possible alignments.

calculateAllAlignments(Align)→ Align

calculateAllAlignments(T, T,LA)→ Align

3.3. Formalized Questions 28

3.3 Formalized Questions

We can now formalize some of the questions in section 1.4. In this section, lists will

be marked using square brackets (e.g., a list of proof results would be represented as

[Proof Result]). The formalization of questions not provided here awaits further work.

Question 1.3 Representation. Taxonomies and articulations between them have been

formalized above. In later chapters, the formalizations will be further grounded in

specific languages.

Question 1.4 Uncertainty. Definitions for relations between taxa occur in several places

in the above formalization: the hierarchical relation ≤isa used in an isa hierarchy

and a taxonomy, intra-taxonomic relations in LT , and articulation relations in LA.

Uncertainty can be represented in these languages by using disjunctive relations. For

example, if a language LT contains two relations, “equals” and “is included in,” the

subset relation ⊆ would be represented by a disjunction: “equals or is included in.”

Question 1.5 Consistency of taxonomies. Given a formal language L, and a model

finder M the consistency of a given taxonomy T may be decided as follows:

taxonomyConsistent : checkConsistency(

formalizeTaxonomy(T,L),L,M)→ Consistency Result

Question 1.6 Models. Given an interpretation I, a formal language L, and a model

finder M, we can ask:

interpModelsTax : checkModel(

I, formalizeTaxonomy(T,L),L,M)→ Consistency Result

3.3. Formalized Questions 29

Question 1.7 Consistency of alignment. Given a formal language L, and a model finder

M the consistency of a given alignment align = (T1, T2,A) may be decided as follows:

consistentAlignment : checkConsistency(

formalizeTaxonomy(T1,L) ∪

formalizeTaxonomy(T2,L) ∪

formalizeArticulations(A,L),L,M)→

Consistency Result

Question 1.8(i) Deductive closure for a taxonomy. Given a consistent taxonomy, a

formal language L and a theorem prover M

taxonomyClosure : [Proof Result |

prove(formalizeTaxonomy(T,L),

formalizeITC(itc,L),L,M),

itc ∈ {calculateAllHC(T) ∪ calculateAllATC(T)}]

This definition returns a list of proof results, with some proofs being successful while

others fail. This list can then be filtered for just the successful proofs to provide a

list of the relations that hold between taxa in a taxonomy.

Question 1.8(ii) Deductive closure for articulations. Given two consistent taxonomies

T1, T2, an alignment Align = (T1, T2,A), a formal language L, and a theorem prover

M

3.3. Formalized Questions 30

articulationClosure : [Proof Result |

prove(formalizeArticulations(A,L),

formalizeArticulations([art],L),L,M),

art ∈ calculateAllArticulations(T1, T2,LA)]

This definition returns a list of proof results, with some proofs being successful while

others fail. This list can then be filtered for just the successful proofs to provide a

list of articulations that hold between two taxonomies.

Question 1.8(iii) Deductive closure for an alignment. Given an alignment Align =

(T1, T2,A), a formal language L, and a theorem prover M

alignmentClosure = taxonomyClosure(T1,L,M) ∪

taxonomyClosure(T2,L,M) ∪

articulationClosure(A,L,M)

Question 1.12(i) Minimal Inter-Taxonomic Constraints. Given a taxonomy T re-

turn a set of taxonomies T1, T2, . . . , Tn where each taxonomy Tn has the same deduc-

tive closure as T , and the size of the set of constraints ≤isa ∪ TC is smaller for Tn

than for T . This list can be further processed to retrieve the taxonomies with the

smallest number of constraints.

3.3. Formalized Questions 31

minimalITCs : [T ′ |

taxonomyClosure(T ′,L,M) = taxonomyClosure(T,L,M),

T ′ ∈ calculateAllTaxonomies(N,≤isa,LT)),

| ≤′isaT
∪ TCT

′| < | ≤isaT ∪ TCT
|]

The vertical bars || signify the cardinality of the set between them.

Example 3.28 (Two minimal sets of formulas). A taxonomy formalized into first-

order logic with the following set of formulas: {∀x : B(x) → A(x), ∀x : C(x) →
A(x),∀x : B(x) ∧ C(x),∀x : ¬(¬B(x) ∨ ¬C(x))} has two sets of minimal formulas:

{∀x : B(x)→ A(x),∀x : C(x)→ A(x),∀x : B(x)∧C(x)} and {∀x : B(x)→ A(x),∀x :

C(x)→ A(x), ∀x : ¬(¬B(x) ∨ ¬C(x))}.

Question 1.12(ii) Minimal Articulations. Given an alignment Align = (T1, T2,A) re-

turn a set of alignments Align1, Align2, . . . , Alignn where alignment Alignn has the

same deductive closure as Align, and the size of the set of articulations A is smaller

in Alignn than in Align.

minimalArticulations : [Align′ |

alignmentClosure(Align′,L,M) =

alignmentClosure(Align,L,M),

Align′ ∈ calculateAllAlignments(Align)),

|A′| < |A|]

3.4. Contributions and Future Work 32

3.4 Contributions and Future Work

This chapter formalizes taxonomies, articulations, and alignments. It also gives preliminary

definitions of terms related to logical proofs. This latter set of terms will probably be revised

once work on explanations has been undertaken more fully. In addition to providing formal

definitions for the major terms used in this dissertation, the chapter defines key operations

used by the CleanTax approach. These operations are then used to formalize some of the

questions described in the dissertation’s introduction. Not all of the questions in section 1.4

have been addressed in this section. Other questions will be formalized in later chapters,

and others remain for future work.

33

Chapter 4

Taxonomy Alignment

4.1 Overview and Objectives

This chapter1 concretizes the definitions of taxonomies, alignments, uncertainty, consis-

tency, and inference given in Chapter 3 using monadic first-order logic.

4.1.1 Prior Work

In Computer Science

The process of finding alignments (often called matching) has been studied in many con-

texts, for example, database schema matching [RB01], XML matching [MHH+01], and

ontology mapping in the semantic web [NM03, KS03, ST05, SSW05, SE07]. This re-

search spans a vast landscape of techniques and scenarios and a number of extensive

reviews have already done an excellent job of capturing the multitude of alignment sys-

tems [KS03, Euz04, Ehr07, SE07]. Rather than recapitulate this work, the following focuses

on systems similar to that in this thesis, notably systems working in situations where the

instances and character-based definitions of taxa are not known and the names of taxa are

ignored. This approach is not meant to exclude the other techniques, such as those that
1Much of this chapter is drawn from [TL07] and [Tha08].

4.1. Overview and Objectives 34

do a lexical analysis of taxon names, or those that use instances to guide alignment. These

methods are all complementary.

A key differentiator between solutions to the alignment problem involves the languages

used to express the data being aligned (XML schemata, ontologies, taxonomies, etc.), and

the language of the articulations involved in that alignment. Most researchers have utilized

some decidable subset of first-order logic, such as description logics or propositional logic.

These logics will be described in more detail in Chapter 5. One exception to this rule

is the OntoMerge [DMQ05] system. OntoMerge represents ontologies and bridging rules

between them in a strongly-typed full first-order language called Web-PDDL [MD02], which

is an extension of the Planning Domain Definition Language (PDDL) [McD98]. OntoMerge

is designed to merge ontologies, translate data represented in one ontology into a second

ontology, and query across ontologies. Although the taxonomies and articulations described

here could be represented in the Web-PDDL language, OntoMerge explicitly ignores the

alignment aspect of the ontology translation process, assuming that bridging axioms are

provided by experts or other systems. This alternative focus reduces the relevance of

OntoMerge to the majority of this thesis. However, it will be revisited in Chapter 6, where

taxonomy merging is discussed. The systems closest to the approach described in this

dissertation (hereafter called the CleanTax approach) are CtxMatch [BMSZ03] and its

enhanced version S-Match [GSY04] from the University of Trento. Both of these systems

take as input two tree-like structures (XML schemas or ontologies) and apply a number of

matching techniques to generate an alignment. One of these techniques casts the input into

propositional logic formulas and computes consistency and new logical relationships using

a SAT reasoner. The main differences between the CtxMatch and S-Match approach and

the CleanTax approach involve the actual logical representations used. CtxMatch and

S-Match represent articulations as logical equivalence, subsumption, or intersection. As

will be seen, CleanTax supports a richer vocabulary for representing articulations —one

that in some cases supports more tractable reasoning than that available to CtxMatch and

S-Match (see Chapter 5 for more on this).

4.1. Overview and Objectives 35

Another significant difference between the current work and other approaches, including

CtxMatch and S-Match, is the way the CleanTax approach represents and processes un-

certainty. In CleanTax, uncertain articulations are represented with disjunctive relation-

ships. In other approaches, uncertainty is typically represented by attaching probabilities

to articulations [PTU03, Ehr07]. Using disjunctive relationships to represent uncertainty

affords some interesting strategies for minimizing uncertainty (see section 9.4).

In Life Sciences

Taxonomies have been studied outside the realm of knowledge representation - primarily in

the life sciences. For example, in 2005, the Taxonomic Data Working Group (TDWG) [tdw],

an international not-for-profit organization that develops standards for biodiversity data,

ratified the Taxonomic Concept Schema (TCS) [TCS]. TCS is an XML Schema that defines

a syntax for describing taxonomic concepts. The TCS includes a list of terms that may be

used to define the relationships between two different taxonomic concepts. This list includes

set-theoretic terms, such as is congruent to and excludes. However, some of the terms are

not well defined. For example, it is unclear whether is included in means proper subset

((), or if it means subset (⊆), which includes the possibility that both sets are equal. It

also includes more vague relationships such as has synonym. These vague relationships are

needed in TCS, as it aims to provide a standard for information providers to communicate

information about their data. If an information provider wants to use a mathematically

imprecise relationship such as has synonym, TCS must support that relationship. However,

unless the meaning of such relations is specified more precisely, its utility for automated

reasoning will be diminished.

Beach et al. [BPB93] introduced, and Berendsohn [Ber95] elaborated, the notion of a

potential taxon, which identifies a taxonomic concept by referencing the context in which the

name is used; e.g., Hypnum flagellare Dicks. sec. Mönkemeyer 1927. This notion is central

to the MoReTaX project [Ber03], in which potential taxa are considered sets of objects,

and the relationships between them are described in precise set-theoretic terms. The five

4.1. Overview and Objectives 36

so-called basic relations that may hold between any two potential taxa (or, in fact, any

two non-empty sets) A and B are: (i) congruence (A ≡ B), (ii) proper inclusion (A (B),

(iii) proper inverse inclusion (A) B), (iv) partial overlap (A ⊕ B), and (v) exclusion

(disjointness) (A ! B). Geoffroy and Güntsch [GG03] study the problem of propagating

knowledge about such binary relationships between taxa: e.g., what can we say about the

relationship between potential taxa A and C, provided we only know that A) B and

B ⊕C? Inspection of all possibilities allows one to deduce that A) C or A⊕C, but none

of the other three options ≡, (, or ! is possible between A and C. Thus, the authors study

combined relationships (i.e., disjunctions of basic relations: e.g., {),⊕}) and demonstrate

how these may be composed to propagate taxonomic knowledge in a potential taxon graph.

Rules for knowledge propagation in a taxon graph are given as if-then rules, embedded in

the MoReTaX system; thus, computing with taxon relations is handled programmatically.

In a sense, the work presented here is a formal grounding and extension of the MoReTaX

program.

4.1.2 Goals and Outcomes

This chapter provides a novel formalization of taxonomies and taxonomic alignment using

monadic first-order logic. The formalization supports questions about taxonomic consis-

tency, uncertainty in articulations, and alignment consistency. The formalization also sup-

ports the inference of unstated intra-taxonomic relationships and articulations. In order to

achieve these goals, the formalization is implemented in a software framework, which will

be described in more detail in Chapter 8. This framework is applied to real-world datasets

to demonstrate the detection of inconsistencies in taxonomies and articulations, and the

inference of new relations between taxa.

4.2. Monadic First-Order Logic (MFOL) 37

4.2 Monadic First-Order Logic (MFOL)

The notion of a formal language was introduced in Chapter 2. One of the most expressive

formal languages is first-order logic, LFOL. Although first-order logic is both sound and

complete, it is also undecidable; there is no method for showing that any arbitrary sentence

in LFOL is provable within LFOL [Chu36, Tur36]. However, a subset of first-order logic,

called monadic first-order logic (LMFOL), is sound, complete, and decidable [Beh22], and

this subset is adequate for reasoning about set constraints [BGW93]. The key differences

between full first-order logic and monadic first-order logic are that in monadic first-order

logic, all predicates take a single argument (as opposed to permitting predicates with arbi-

trary arity), and monadic first-order logic has no function symbols. The formal syntax and

semantics of both monadic first-order logic and full first-order logic are presented in Ap-

pendix sections A.1.2 and A.1.1 respectively. In this chapter, taxonomies and articulations

between them will be formalized and translated into LMFOL.

4.3 Formalizing Taxonomies as Monadic First-Order Logic

Constraints

As defined in Chapter 3, a taxonomy is a 4-tuple T = (N,≤isa,LT ,TC) consisting of a set

of taxa N, a hierarchical relation ≤isa, a language for expressing constraints between taxa

(and sets of taxa) in the taxonomy LT , and a set of constraints in that language TC. To

ground this definition in LMFOL, we need to specify three things: (i) how to formalize the

≤isa relation, (ii) what the constraint language LT is, and (iii) how to translate constraints

in TC into monadic first-order logic constraints.

4.3.1 Formalizing Hierarchical Constraints (≤isa)

The relation N ≤isa M is formalized in LMFOL as follows: ∀x: N(x)→M(x), stating that

if x is in N , then x is also in M . Note that N and M are unary predicates, in keeping with

4.3. Formalizing Taxonomies as Monadic First-Order Logic Constraints 38

the restrictions of monadic logic. An interpretation I satisfies this constraint iff NI ⊆MI .
With this logic formalization, the containment relation defined by a pair of taxa (N ,M)

occuring in ≤isa is true if either NI (MI (proper containment) or NI = MI (set equality).

In this way, we can associate with each taxonomy T a set of LMFOL constraints Φisa
T

that capture the meaning of the hierarchical constraints:

Φisa
T := { ∀x: N(x)→M(x) | (N,M) ∈ ≤isa }

Once we have formalized a taxonomy T as a set of logical constraints Φisa
T , we can ask

whether or not a given labeling I of elements agrees with the taxonomy. Formally: does

I |= Φisa
T hold?

Example 4.1. Consider the following oversimplified taxonomy, created by a taxonomist

named Carl:

TCarl = ({Fox, Dog, Canis}︸ ︷︷ ︸
N

, {(Fox, Canis), (Dog, Canis)}︸ ︷︷ ︸
≤isa

)

Carl’s taxonomy TCarl, interpreted as a set of LMFOL formulas Φisa
TCarl

constrains the interpre-

tation of the taxa N = {Fox, Dogs, Canis}. Now consider a museum collection organized by

a curator named Ed who has labeled the specimens in his collection with taxonomic names.

We can view this labeling as a logic interpretation IEd that assigns to each taxon name

N ∈ N a subset NIEd ⊆ D of elements from the underlying domain (here: specimens).

Let Ed’s specimen collection include {s1, s2}, and let his interpretion of Carl’s names be

FoxIEd = {s1}, VulpesIEd = {s1}, DogIEd = {s2}, and CanisIEd = {s2}.
We can now ask whether Ed’s specimen labeling IEd satisfies the constraints imposed

by Carl’s taxonomy TCarl, or more formally: does IEd |= Φisa
TCarl

hold?

Given Carl’s taxonomy and Ed’s interpretation, the answer is no. Carl requires

∀x: Fox(x) → Canis(x), but for Ed’s labeling IEd we have FoxIEd * CanisIEd . Therefore

IEd 2 Φisa
TCarl

, i.e., Ed’s specimen labeling is not a model of (or: does not satisfy) Carl’s

4.3. Formalizing Taxonomies as Monadic First-Order Logic Constraints 39

taxonomy constraints.

Assume, as in Example 4.1, that an interpretation I is given and that we wish to

check whether I is a model of (i.e., satisfies) ΦT , where ΦT captures constraints about

the taxa in T . Model-checking whether I |= ΦT holds can be done efficiently even for

large interpretations (here: labeled specimen collections) I, as it precisely corresponds to

evaluating the constraints ΦT against a given database instance I. Thus, for each constraint

ϕ ∈ ΦT we can simply run a yes/no (i.e., boolean) SQL query Qϕ against a relational

database instance I. Here, ΦT is not limited to isa constraints, but can include any finite

set of monadic first-order constraints – a much more expressive language than Φisa
T .

While model-checking I |= ΦT does not require a full-fledged automated first-order

reasoner (SQL query evaluation is sufficient), we will encounter harder implication problems,

where no interpretation I is given. Instead we wish to know whether a “piece of taxonomic

knowledge” ϕ follows from a set of taxonomy constraints ΦT , independent of I. Determining

this, i.e., whether ΦT |= ϕ holds, requires LMFOL reasoning.

4.3.2 Formalizing LT : The Language of Taxonomic Constraints

LT is the language used to describe constraints between taxa in a taxonomy. LT could be

full first-order logic. However, reasoning in LFOL is undecidable, rendering it an unsatis-

factory choice unless the power of full LFOL is necessary. However, LFOL is more expressive

than needed for the questions asked in this thesis, and we can shift to the less expressive

monadic first-order logic.

We have already seen how hierarchicial constraints, initially represented as partial order

relations ≤isa are rendered into LMFOL. A similar translation process occurs with the

constraints represented in LT . A simple strategy would be to make LT exactly LMFOL,

eliminating the need to translate from LT to LMFOL. However, part of the reason for

creating a taxonomic constraint language is to provide a natural set of relations for modelers

to apply within a given context. For example, in some domains, it may be natural to permit

4.3. Formalizing Taxonomies as Monadic First-Order Logic Constraints 40

N M

(v) exclusion

N M

(iv) partial overlap

N M

(ii) proper
inclusion

M N

(iii) proper inverse
inclusion

N M

(i) congruence

Figure 4.1: The 5 basic relations: (i) N ≡ M , (ii) N (M , (iii) N) M , (iv) N ⊕M , and
(v) N !M

only pairwise constraints between taxa. In other domains more complex constraints may

apply. This chapter and the ones to follow, will describe a number of such sets of constraints,

defining various versions of LT .

Let us turn, then, to an example of a LT called LT1 , one suited for application to sys-

tematic biology. LT1 supports several different types of constraints, which are divided here

into three categories: (i) simple relations between taxa, (ii) disjunctive relations between

taxa, (iii) and other taxonomic constraints. The constraint types described below have

been chosen to match relationships described in the TDWG [tdw] standard for describing

biological taxonomies [TCS], as well as to include other constraint types that hold in various

settings in systematic biology. Investigations into the relevance of LT1 for other domains

remains for future work.

Basic Relations Between Taxa

The simplest constraints in LT1 occur between two taxa and contain no uncertainty. Let

N,M denote two non-empty sets.2 Then exactly one of the following five basic relations

must hold between them (cf. Figure 4.1): (i) congruence (equivalence) (N ≡M), (ii) proper

inclusion (N (M), (iii) proper inverse inclusion (N) M), (iv) partial overlap (N ⊕M),

and (v) exclusion (disjointness) (N !M).

Let B5 = {≡,(,),⊕, !} denote this set of basic relations. The importance of the B5

relations (and their combinations) for capturing and reasoning with constraints between

(potential) taxa has been noted before, both in computer science [RCC92, Ben94, JD97]

2Thus, the extents of N and M have been fixed as NI and MI via an (otherwise unimportant) interpre-
tation I. Non-empty sets are critical to maintain the mutual exclusivity of the B5 relations. If empty sets
were permitted, an empty set would be simultaneously disjoint from, and included in all non-empty sets.

4.3. Formalizing Taxonomies as Monadic First-Order Logic Constraints 41

and in biology [GB03a, TCS, FPW07].

These five basic relations can be translated into LMFOL as follows:

• Congruence: for each N ≡M constraint in TC, add the formula:

∀x: N(x)↔M(x)

• Proper inclusion: for each N (M constraint in TC, add the formula:

∀x: N(x)→M(x) ∧ ∃a: M(a) ∧ ¬N(a)

• Proper inverse inclusion: for each N)M constraint in TC, add the formula:

∀x: M(x)→ N(x) ∧ ∃a: N(a) ∧ ¬M(a)

• Partial overlap: for each N ⊕M constraint in TC, add the formula:

∃a∃b∃c: N(a) ∧M(a) ∧N(b) ∧ ¬M(b) ∧ ¬N(c) ∧M(c)

• Exclusion for each N !M constraint in TC, add the formula:3

¬∃x: N(x) ∧M(x)

Unlike Φisa
T , the constraints ΦB5

T for a B5-taxonomy graph T may be inconsistent. For

example, consider TC = {B ≡ A, C (A, B ! C}. The resulting set of constraints ΦB5
T is

inconsistent: Since B ≡ A it follows that C (B, contradicting B ! C.

Disjunctive Relations Between Taxa

As noted, exactly one of the five basic relations B5 must hold between any two sets N I

and M I , i.e., provided an interpretation I = (D, I) is given for all taxa N , M under

consideration. However, this is usually not the case — one often does not have complete

knowledge corresponding to an interpretation I of taxa. Instead, one must reason with

partial taxonomic knowledge given in the form of constraints that are to be satisfied by any
3Two equivalent, alternative formalizations are: (i) ∀x: ¬N(x) ∨ ¬M(x) and (ii) ∀x: N(x)→ ¬M(x).

4.3. Formalizing Taxonomies as Monadic First-Order Logic Constraints 42

interpretation I. This means LT1 should be able to express not only the basic relations B5,

but the larger set of possible combinations between them. By disjunctively combining the

basic relations B5 in all possible ways, we obtain 32 (=25) relations, one for each subset of

B5; we denote this set of disjunctive relations by R32. For example, R32 contains {≡,(}
which is read as the disjunction (N ≡M)∨ (N (M). This is equivalent to a standard isa

relation, i.e., N ⊆M . R32 also contains extreme cases of relations, e.g., {≡,(,),⊕, !}, the

disjunction of all basic relations, stating that nothing about the relationship between two

taxa is known.

Each of these R32 can be reduced to LMFOL with a set of constraints ΦR32
T by simply

taking the disjunction of the translated constituents of the disjunctive relation. Once we

have done so, we can test whether some taxonomic knowledge ϕ is implied by T by checking

whether ΦR32
T |= ϕ holds. Similarly, we can test whether ΦR32

T is consistent. Just as ΦB5
T

above, ΦR32
T is a subset of LMFOL, so implication and satisfiability are decidable.

Corollary 4.2. The implication problem for taxonomies (formalized as constraints ΦT ⊆
LMFOL) is decidable.

Let ΦT ⊆ LMFOL be a finite set of LMFOL constraints formalizing a taxonomy T . Then

ΦT |= ϕ is decidable. Since there are sound and complete first-order calculi (implemented

by automated first-order reasoners), we can check whether ϕ can be proven from ΦT using

an automated reasoner, denoted ΦT ` ϕ. Similarly, the corollary implies that there is

an algorithm to check whether a set of taxonomy constraints ΦT is consistent. However,

automated reasoning over large sets of taxonomy constraints may still be infeasible in

practice.

Example 4.3. Translating a disjunctive relation into LMFOL. The disjunctive relation

N{≡,(}M translates to the following in LMFOL:

(∀x: N(x)↔M(x)) ∨ (∀x: N(x)→M(x) ∧ ∃a: M(a) ∧ ¬N(a))

This is simply the disjunction of the translations of (N ≡M) and (N (M).

4.3. Formalizing Taxonomies as Monadic First-Order Logic Constraints 43

⊥

≡ � � ⊕ !

≡� ≡� ≡ ⊕ ≡ !�� � ⊕ � !� ⊕ � ! ⊕ !

≡�� ≡� ⊕ ≡�!≡� ⊕ ≡�! ≡ ⊕!�� ⊕ ��! � ⊕! � ⊕!

≡⊆⊇ ⊕ ≡�� ! ≡� ⊕ ! ≡� ⊕ ! �� ⊕ !

≡�� ⊕ !

Figure 4.2: The R32 lattice. Each node represents one of the R32 relations. The power set
of B5 induces the complete lattice shown here. The top element {≡,(,),⊕,!} represents a
complete lack of knowledge about the relationship between two taxa. Each layer-1 node
represents one of the B5. Nodes in between represent some level of uncertainty about the
relationship between two taxa.

The R32 lattice. The constraints in R32 form the lattice shown in Figure 4.2. The top

of the lattice > = {≡,(,),⊕, !} represents the situation where nothing is known about

the relationship between the sets. We call this layer-5. Layer-1 corresponds with the B5

relations, representing situations where the relationship between the sets is known (e.g.,

they are equal, one is the subset of the other, etc). Layer-4 nodes represent situations

where one relation is known not to hold. The bottom of the lattice ⊥ represents an im-

possible situation, one which might arise from some operation on sets (e.g., determining

the relationship between sets N and M if we know that N ≡M and N !M , an impossible

situation if the sets are non-empty).

The Maximally Informative Relation (mir). For a pair of taxa N,M usually

4.3. Formalizing Taxonomies as Monadic First-Order Logic Constraints 44

many of the relations in R32 hold, i.e., evaluate to true. For example, if N ≡ M , then

for any disjunction ◦ ∈ R32 containing ≡, N ◦M also holds. However, there is a single

distinguished true relation which implies all other true relations in R32. This is called the

maximally informative relation (mir). Given a mir of ≡ between two nodes N,M , we know

that N ≡M , N{≡,(}M , N{≡,⊕, !}M , etc.

Other Taxonomic Constraints

So far we have considered fragments of our taxonomy language (LT1) for capturing simple

isa-hierarchies ≤isa (Section 4.3.1), the five basic relations B5 (Section 4.3.2), and the 32

combined relations R32 (Section 4.3.2).

Many other types of constraints may hold in a taxonomy. Such constraints may be

applied to a single taxon in a taxonomy, or to all taxa that apply. Some examples are:

Non-Emptiness (N). A given taxon N ∈ N of a taxonomy T = (N,≤isa,LT ,TC)

may or may not have actual instances. If we want to express that some nodes N∃ ⊆ N

cannot be empty, i.e., have at least one instance, then we can express this using a logic

constraint: for each N ∈ N∃, add the constraint:

• ∃x: N(x)

Sibling Disjointness (D). Most biological taxonomies require disjointness of sibling

elements, i.e., among the children {N1, N2, . . . } of a parent M . For example, if a wolf is a

kind of Canis, and a fox is a kind of Canis, then an animal cannot be both a wolf and a

fox. The formulas enforcing sibling disjointness are: for each pair of hierarchical constraints

N1 ≤isa M and N2 ≤isa M with N1 6= N2, add the LMFOL constraint:

• ¬∃x: N1(x) ∧N2(x)

Coverage (C). Let M be a taxon whose children are {N1, . . . , N`}. We know at least

that Ni ≤isa M for all i = 1, . . . , `. So the union of all children is contained in the parent

4.3. Formalizing Taxonomies as Monadic First-Order Logic Constraints 45

M . However, we may or may not know whether the converse is true, i.e., that the union

of children covers the parent. To enforce this, let M∀ ⊆ N be the set of parents who are

completely covered by their children (i.e., there is no elements in M that is not also in at

least one of its children): for all M ∈M∀ having children N1, . . . , N` of M , add:

• ∀x: M(x)→ N1(x) ∨N2(x) ∨ · · · ∨N`(x)

Further Constraints. The above constraints are just a few of the many possi-

ble constraints that may be assumed for, or required of, a particular taxonomy. An-

other example constraint might attribute rank to taxa.4 If T = (N,≤isa,LT ,TC) is

ranked then there is a function % : N → R, where R is a set of ranks (e.g., R =

{species, genus, family, order, class, phylum, kingdom} is common). These ranks are ordered

and every hierarchical constraint N ≤isa M must maintain that order, i.e., %(N) ≤ %(M).

Global Defeasible Constraints Versus Local Constraints

Some of the constraints described above, notably Non-Emptiness N, Sibling Disjointness

D, and Coverage C, may be applied to all applicable taxa in a taxonomy, or may be

applied selectively. There are reasons to do either. To ensure that a taxonomy being

creating adheres to a specific definition of taxonomy, it may make sense to apply the

relevant constraints globally. The constraints to apply will depend on the definition of

taxonomy.

For example, in a published expert biological taxonomy, each taxon (e.g., Ranunculus

according to Benson, 1948) has at least one instance (e.g., a species holotype). Each taxon

in such a taxonomy has a rank, and the child taxa of a given taxon are disjoint. For any given

taxon, the expert usually has tried to capture the full extent of the taxon (perhaps within

a geographic scope); the set of a taxon’s elements is defined as the combined elements of

that taxon’s child taxa. Taken together, we would say that a published taxonomy conforms
4The term “rank” is heavily overloaded: In graph theory, the rank of a node is the number of children

of that node. In set theory, the rank of a set is the number of elements in the set. Here, a rank is a label
attached to taxa.

4.3. Formalizing Taxonomies as Monadic First-Order Logic Constraints 46

to the following constraint types: non-emptiness, sibling disjointness, coverage, and ranks.

As another example, consider a museum’s specimen collection. In this situation, there

may be specimens that are not identified down to the species level. If this is the case,

a specimen might be an element of a genus-level taxon, but not an element of any child

species-level taxon [Blu07]. Therefore, a genus may contain specimens not contained in

any of the species under that genus. We would say that the taxonomy does not adhere to

the coverage constraint. The taxonomy is otherwise similar to the one described above: all

taxa in the collection have at least one example (non-emptiness), sibling taxa are disjoint,

and the taxa are ranked.

Thus, when formalizing a taxonomy, it is important to know what type of taxonomy is

intended. A taxonomist who wishes to produce a traditional taxonomic revision of a given

genus would provide a ranked, sibling disjoint, covered taxonomy, requiring non-emptiness

of taxa.

In all of the above cases, it may be the case that a constraint may not apply to some

set of taxa. In this use case, the constraint would apply globally, but would be defeasible

locally if it introduced a contradiction. The remainder of this chapter assumes that the N,

D, and C, when applied, are applied globally and will be called global taxonomic constraints

(GTCs).

In addition to using the constraints to ensure that an instance of a taxonomy conforms

to the rules of a specified type of taxonomy, the constraints provide additional formulas that

may contribute extra deductive power when deciding whether or not an alignment between

two taxonomies is logically consistent. The additional formulas may also help a logic-based

reasoner deduce additional articulations between taxonomies. Before demonstrating this,

we must first define how one may express articulations between different taxonomies as

constraints.

4.4. Formalizing Articulations as Monadic First-Order Logic Constraints 47

4.4 Formalizing Articulations as Monadic First-Order Logic

Constraints

The previous sections considered individual taxonomies, but not relationships between two

or more different taxonomies. Borrowing terminology from the area of knowledge repre-

sentation and formal ontologies, we call a logic constraint relating taxa or concepts from

different taxonomies an articulation [MWK00].

As defined in Chapter 3, an articulation is a 4-tuple A = (N,N,LA, AC) consisting

of two sets of taxa (one from each of two taxonomies), a language for expressing inter-

taxonomic constraints LA, and a set of inter-taxonomic constraints AC in that language.

The articulation language LA may be the same as the taxonomy language (LT) of one

of the taxonomies (or of both, if they use the same language), or it may be completely

different. In order to work within a reasoning framework, however, all of the languages

involved in an articulation, the two ≤isa constraint languages, the two LT languages, and

the LA language, must be translatable to a common formal language.

For example, let T1 and T2 be taxonomies, and α an articulation between them, denoted

T1 ∼α T2. As long as all the constraints in all these artifacts can be represented in, for

example, monadic first-order logic, we can check, using an automated reasoner, whether a

specific formula ϕ is a consequence of the articulation, i.e., whether ΦT1 ∪ ΦT2 ∪ Φα |= ϕ

holds. Some consequences ϕ may be unintended, e.g., if ϕ = False can be deduced,5 then

ΦT1 ∪ ΦT2 ∪ Φα is inconsistent, indicating that the taxonomies and/or the articulation α

“have problems.”

As with LT1 , the language used to define LA1 could be first-order logic, monadic first-

order logic, or some other formal language. In this chapter, LA1 is defined as the subset

of LT1 that models the R32 constraints. This restricts articulations such that they may

only apply between single taxa within the given taxonomies. This is in keeping with the

domain chosen to demonstrate the framework, as well as with much of the current work on
5Instead of False, sometimes the empty clause 2 is used.

4.5. Combining ≤isa, LT , and LA into Ltax 48

alignment [Ehr07]. Once a set of articulations has been cast into LA1 , it can be converted

to LMFOL using the same translations as described for LT1 .

4.5 Combining ≤isa, LT , and LA into Ltax

The previous sections defined three different types of relations in an alignment: ≤isa, the

partial order describing hierarchical relations between taxa in a taxonomy; LT , the lan-

guage for describing other constraints within a taxonomy; and LA, the language for stating

articulations between taxa in different taxonomies. The combination of these representa-

tions is called Ltax (Ltax= (≤isa, LT , LA)). In this chapter, each element of the triple

(Ltax1 = (≤isa, LT1 , LA1)) has a translation into a common formal language, LMFOL.

4.6 Applying the CleanTax Framework

The remainder of this chapter applies the formalisms described above, and in Chapter 3,

to taxonomies and articulations taken from a real-world dataset. The dataset contains

seven different expert taxonomies of the genus Ranunculus – a flowering plant genus which

includes buttercups. In addition to the seven taxonomies, an expert, Peet [Pee05], has

asserted many articulations. These articulations are stated using relations drawn from the

TCS standard [TCS] for representing taxonomic information. We have translated a subset

of those relations into the R32 relations. The following sections describe some applications

of the CleanTax framework to this dataset, demonstrating how the framework detects

consistent alignments, inconsistent alignments, and new articulations, in small and large

taxonomies.

4.6.1 Small-Scale Applications of CleanTax

This section uses small taxonomies to demonstrate how the CleanTax framework can de-

tect consistent alignments, inconsistent alignments, and new articulations. The subsequent

4.6. Applying the CleanTax Framework 49

B.Rm
Ranunculus
macauleyi

K.Rmb
Ranunculus
macauleyi

var.
brandegeei

K.NB07
Nom.

Buttercup
10407

K.Rm
Ranunculus
macauleyi

B.NB08
Nom.

Buttercup
10408

B.Rmt
Ranunculus
macauleyi

var.
typicus

Benson, 1948 Kartesz, 2004

(b) Articulations from Peet, 2005

R. macauleyi (B. 1948) ! R. macauleyi (K. 2004)
Nom. Buttercup 10408 (B. 1948) ! R. m. var brandegeei (K. 2004)
R. m. var typicus (B. 1948) ! Nom. Buttercup 10407 (K. 2004)

B.Rm !P K.Rm

B.NB08 !P K.Rmb

B.Rmt !P K.NB07
Peet, 2005

K.Rmb "isa K.Rm

K.NB07 "isa K.Rm
Kartesz, 2004

B.NB08 "isa B.Rm

B.Rmt "isa B.Rm
Benson, 1948

FormulaAuthority

(c) Ltax Formulas(a) Taxonomies

Non-Emptiness
N(B.Rm), N(B.NB08)
N(B.Rmt), N(K.Rm)
N(K.Rmb), N(K.NB07)

Sibling Disjointness

Coverage

D(B.Rm), D(B.NB08)
D(B.Rmt), D(K.Rm)
D(K.Rmb), D(K.NB07)

C(B.Rm), C(B.NB08)
C(B.Rmt), C(K.Rm)
C(K.Rmb), C(K.NB07)

1

Figure 4.3: Equivalence between (a) two taxonomies, (b) given articulations, (c) represented
in Ltax1 formulas.

section describes a more large-scale application of CleanTax.

Determining the Consistency of an Alignment

Figure 4.3 shows the equivalence between two taxonomies for the species Ranunculus

macauleyi and its varieties. Part (a) of the figure shows a taxonomy published by Benson

[Ben48], and a newer one, published by Kartesz [Kar04]. Part (b) lists the articulations

between the taxa provided by Peet. Part (c) combines the taxonomies and the articula-

tions into statements in ≤isa, LT1 , and LA1 . These statements, combined with the N, D,

and C GTCs are then transformed into LMFOL formulas, shown in Table 4.1.

To prove the consistency of the alignment in Figure 4.3, we can apply an automatic

reasoner such as Mace46 to the LMFOL sentences in Table 4.1. Mace4 discovers models

that satisfy sets of first-order logic formulas. If Mace4 finds such a model, the formulas

must be consistent. In the case of Figure 4.3, Mace4 finds a model with two domain

elements, a and b: a satisfies B .NB08 (x), B .Rm(x), K .Rmb(x), and K .Rm(x), while b

satisfies B .Rmt(x), B .Rm(x), K .NB07 (x) and K .Rm(x). By discovering a model for the
6Prover9 and Mace4: http://www.cs.unm.edu/~mccune/mace4/

http://www.cs.unm.edu/~mccune/mace4/

4.6. Applying the CleanTax Framework 50

Authority Formula

Benson, 1948
(∀x: B.NB08(x)↔ B.Rm(x))∨

(∀x: B.NB08(x)→ B.Rm(x) ∧ ∃a B.Rm(a) ∧ ¬B.NB08(a))
(∀x: B.Rmt(x)↔ B.Rm(x))∨

(∀x: B.Rmt(x)→ B.Rm(x) ∧ ∃a B.Rm(a) ∧ ¬B.Rmt(a))

Kartesz, 2004
(∀x: K.Rmb↔ K.Rm(x))∨

(∀x: K.Rmb(x)→ K.Rm(x) ∧ ∃a K.Rm(a) ∧ ¬K.Rmb(a))
(∀x: K.NB07(x)↔ K.Rm(x))∨

(∀x: K.NB07(x)→ K.Rm(x) ∧ ∃a K.Rm(a) ∧ ¬K.NBO7(a))

Peet, 2005
∀x: B.Rm(x)↔ K.Rm(x)
∀x: B.NB08(x)↔ K.Rmb(x)
∀x: B.Rmt(x)↔ K.NB07(x)

Sibling Disjointness
∀x: B.NB08(x)→ ¬B.Rmt(x)
∀x: K.Rmb(x)→ ¬K.NB07(x)

Coverage
∀x: B.Rm(x)↔ B.NB08(x) ∨B.Rmt(x)
∀x: K.Rm(x)↔ K.Rmb(x) ∨K.NB07(x)

Non-Emptiness

∃x: B.Rm(x)
∃x: B.NB08(x)
∃x: B.Rmt(x)
∃x: K.Rm(x)
∃x: K.Rmb(x)
∃x: K.NB07(x)

Table 4.1: LMFOL rules for Figure 4.3 plus Non-Emptiness, Sibling Disjointness, and
Coverage constraints

4.6. Applying the CleanTax Framework 51

R. arizonicus (B. 1948) ≡ R. arizonicus (K. 2004)
R.a. var typicus (B. 1948) R.arizonicus (K. 2004)

B.Ra
Ranunculus
arizonicus

B.Rac
R.a. var

chihuahua

B.Rat
R.a. var
typicus

Benson, 1948

K.Ra
Ranunculus
arizonicus

Kartesz, 2004

≡P

?

⊂ P

⊂

(a) Taxonomies

B.Ra ≡P K.Ra
B.Rat P K.Ra⊂

Peet, 2005

B.Rac ≤isa B.Ra
B.Rat ≤isa B.RaBenson, 1948

FormulaAuthority

(c) Ltax Formulas

(b) Articulations from Peet, 2005

Non-Emptiness N(B.Ra), N(B.Rac)
N(B.Rat),N(K.Ra)

Sibling Disjointness D(B.Ra), D(B.Rac)
D(B.Rat),D(K.Ra)

Coverage C(B.Ra), C(B.Rac)
C(B.Rat),C(K.Ra)

⊂

Figure 4.4: Inference of new articulations from taxonomies (a), articulations from Peet (b),
and formulas in Ltax1 (c)

formulas, Mace4 proves the consistency of the taxonomies and the associated articulations.

Discovering Unstated Articulations

Leveraging the machinery of first-order logic, we can use the formalisms to discover un-

stated, but logically implied consequences ϕ (including new articulations) between taxa.

Peet makes the following claims (Figure 4.4): Benson’s Ranunculus arizonicus var.

typicus (marked B.Rat) is included in Kartesz’s Ranunculus arizonicus (K.Ra), and Ben-

sons’s Ranunculus arizonicus (B.Ra) is equivalent to Kartesz’s Ranunculus arizonicus

(K.Ra). From these facts, it seems plausible that Benson’s Ranunculus arizonus var. chi-

huahua (B.Rac) must also be contained in Kartesz’s Ranunculus arizonicus. CleanTax

can prove that this is the case.

Intuitively, it is easy to see that B.Rac must be contained in K.Ra. B.Rac is a type of

B.Ra and Peet says that B.Ra equals K.Ra. Because those terms are equivalent, K.Ra

may be substituted wherever B.Ra is seen, and therefore, B.Rac ⊆P K.Ra. To formally

prove the hypothesis, CleanTax uses Prover9 on the first-order formulas created by

translating the articulations in Figure 4.4 into LMFOL along with the N, D, and C GTCs.

4.6. Applying the CleanTax Framework 52

Clause# Formula or Clause Comment

1 ∀x : B.Rac(x)→ B.Ra(x) Assumption
3 ∀x : B.Ra(x)↔ K.Ra(x) Assumption
4 ∀x : B.Rat(x)→ K.Ra(x) Assumption
8 ∃x : B.Rat(x) Assumption
10 ∀x : B.Rac(x)→ ¬B.Rat(x) Assumption
12 ∀x : B.Rac(x)→ K.Ra(x)∧ Goal

(∃y : (K.Ra(y) ∧ ¬B.Rac(y)))
14 ∀x : ¬B.Rac(x) ∨B.Ra(x) Clausify 1
15 ∀x : ¬B.Rac(x) ∨ ¬B.Rat(x) Clausify 10
17 B.Rac(c6) Deny 12
18 ∀x : ¬K.Ra(c6) ∨ ¬K.Ra(x) ∨ ¬B.Rac(x) Deny 12
19 B.Rat(c4) Clausify 8
21 ∀x : ¬B.Rat(x) ∨K.Ra(x) Clausify 4
25 ∀x : ¬K.Ra(c6) ∨ ¬K.Ra(x) ∨ ¬B.Rat(x) Resolve 18 15
27 ∀x : ¬B.Ra(x) ∨K.Ra(x) Clausify 3
30 B.Ra(c6) Resolve 17 14
35 K.Ra(c4) Resolve 19 21
36 ¬K.Ra(c6) ∨ ¬K.Ra(c4) Resolve 25 19
37 ¬K.Ra(c6) Copy 36, unit del 35
40 K.Ra(c6) Resolve 30 27
41 2 Copy 40, unit del 37

Table 4.2: Prover9’s proof of the query in Figure 4.4: Is Benson’s Ranunculus arizonicus
var. chihuahua contained in Kartesz’s Ranunculus arizonicus?

CleanTax then asks Prover9 to prove that B.Rac is a proper subset of K.Ra. The proof

attempt succeeds with the proof shown in Table 4.2: Prover9 shows that B.Rac (K.Ra

by proving that the negation of the hypothesis leads to a contradiction. Although the

hypothesis seems intuitively true, the automatically derived formal proof involves many

mechanical proof steps.

Detecting Inconsistencies in an Alignment

The CleanTax framework can also detect inconsistencies in an alignment. Consider the

alignment from the Ranunculus dataset shown in Figure 4.5. The taxonomies and articula-

tion derived from this figure are inconsistent7 if the taxonomies conform to the N, D, and C

7More precisely, Φ(T1) ∪ Φ(T2) ∪ Φ(A) |= 2

4.6. Applying the CleanTax Framework 53

Benson, 1948 Kartesz, 2004

(b) Articulations from Peet, 2005

R. hydrocharoides (B. 1948) ≡ R. hydrocharoides (K. 2004)
R. h. var. stolonifer (B. 1948) ≡ R. h. var. stolonifer (K. 2004)
R. h. var typicus (B. 1948) ≡ R. h. var. typicus (K. 2004)

B.Rh ≡P K.Rh
B.Rhs ≡P K.Rhs
B.Rht ≡P K.Rht

Peet, 2005

K.Rhs ≤isa K.Rh
K.Rht ≤isa K.Rh

Kartesz, 2004

B.Rhn ≤isa B.Rh
B.Rhs ≤isa B.Rh
B.Rht ≤isa B.Rh

Benson, 1948

FormulaAuthority

(c) Ltax Formulas(a) Taxonomies

Non-Emptiness

Sibling Disjointness

Coverage

N(B.Rh), N(B.Rhn)
N(B.Rhs), N(K.Rht)
N(K.Rh), N(K.Rhs), N(K.Rht)

B.Rh
Ranunculus

hydrocharoides

B.Rhn
R.h.var.
natans

B.Rhs
R.h. var

stolonifer

B.Rht
R.h. var
typicus

K.Rh
Ranunculus

hydrocharoides

K.Rhs
R.h. var

stolonifer

K.Rht
R.h. var
typicus

D(B.Rh), D(B.Rhn)
D(B.Rhs), D(K.Rht)
D(K.Rh), D(K.Rhs), D(K.Rht)

C(B.Rh), C(B.Rhn)
C(B.Rhs), C(K.Rht)
C(K.Rh), C(K.Rhs), C(K.Rht)

Figure 4.5: An alignment that is inconsistent under the non-emptiness, sibling disjointness,
and coverage constraints.

GTCs. We can see the inconsistency of this articulation by asserting a member of Ranun-

culus hydrocharoides var. natans (Benson, 1948). If Benson’s taxonomy adheres to the

Non-Emptiness constraint, then there must be such an element. If there is such an element,

then it is also an instance of Ranunculus hydrocharoides var. natans (Benson, 1948). Fol-

lowing Peet’s mapping, the instance must also be an instance of Ranunculus hydrocharoides

var. natans (Kartesz, 2004). According to the Coverage constraint, this means that it

must also be an instance of either Ranunculus hydrocharoides var. stolonifer (Kartesz,

2004) or Ranunculus hydrocharoides var. typicus (Kartesz, 2004). However, if this is the

case, then the instance of Ranunculus hydrocharoides var. natans (Benson, 1948) must

also be an instance of either Ranunculus hydrocharoides var. stolonifer (Benson, 1948) or

Ranunculus hydrocharoides var. typicus (Benson, 1948). Both cases violate the Sibling

Disjointness constraint.

This example is interesting because the inconsistency only appears if the taxonomies

adhere to the non-emptiness, sibling disjointness, and coverage constraints. Had any of

these constraints not been in effect, the alignment would have been considered consistent.

4.6. Applying the CleanTax Framework 54

If the sibling disjointness constraint were not in effect, for example, all the elements of

B.Rhn could also be elements of B.Rhs and there would be no inconsistency. If the

coverage constraint were not in effect, K.Rh could have elements not contained in K.Rhs

or K.Rht, and these elements could be the same as those in B.Rhn. Finally, if the non-

emptiness constraint were not in place, then B.Rhn could simply have been empty. The

dependence of the proof of inconsistency on the application of all three constraints highlights

the importance of clearly stating the type of taxonomies being aligned.

We formally show the inconsistency of the elements in Figure 4.5 using Prover9. To

show that Φ |= ϕ the system adds the negated goal ¬ϕ to the assumptions Φ, trying to

find a refutation, i.e., showing that Φ ∪ {¬ϕ} ` 2 holds.8 The proof establishing the

inconsistency of the articulation in Figure 4.5 appears in the Appendix (A.4.2).

In this example, the explanation for Peet’s mapping derives from the geographic scope

of the two authorities being mapped. Benson, 1948 provides a world-wide taxonomy

for Ranunculus hydrocharoides while Kartesz’s taxonomy is restricted to North America,

where there are no known instances of Ranunculus hydrocharoides var. natans. In one sense,

limiting the scope to North America, Benson and Kartesz have equivalent definitions of

Ranunculus hydrocharoides, hence Peet’s equivalence mapping. In another sense, when

applied globally, Kartesz’s notion of Ranunculus hydrocharoides should be represented

as a subset of Benson’s Ranunculus hydrocharoides. This indicates that data classified

with Kartesz’s North American taxonomy may be correctly merged into data classified

according to Benson’s world taxonomy, but not the other way around. Merging specimens

classified with Benson’s world taxonomy into a dataset classified with Kartesz’s tax-

onomy, and stating that the combined data are in accordance with Kartesz’s taxonomy

would lead one to incorrectly believe that Kartesz’s taxonomy was global in scope rather

than local.
8If Prover9 is simply given a set of formulas, a proof means finding a refutation of the given set of

clauses (any one of which could be thought of as the negated theorem to be proven).

4.6. Applying the CleanTax Framework 55

4.6.2 A Large-Scale Application of CleanTax

The previous section demonstrated the application of the CleanTax formalizations to

small alignments, involving few taxa and articulations. The entire Ranunculus dataset,

however, contains far more information. The biggest two taxonomies in the dataset com-

prise 360 taxa (218 for Benson and 142 for Kartesz), and 206 articulations from Peet.

Analyzing taxonomies of this size requires a framework for executing a large number of

logical tests. A high-level description of an implementation of the CleanTax framework

for this purpose is provided here, followed by results derived from applying the framework

to the aforementioned alignment.

Target Use Case

This large-scale analysis was carried out in order to address the following use case: Imagine

a scientist who wants to integrate data from a number of field studies about observations

of Ranunculi around the world. The scientist discovers that some of the studies used a

definition of Ranunculus provided by Benson, 1948, and other studies used a more recent

definition provided by Kartesz, 2004. In order to harmonize the data, the scientist needs to

know how the concepts of Ranunculi compare in these two taxonomies. Luckily, the Peet,

2005 dataset is available for download.

However, it is unclear whether the taxonomies in that dataset meet the scientist’s notion

of taxonomy. The Peet dataset does not encode taxonomic constraints that the scientist

might assume must hold in a biological taxonomy, such as non-emptiness, sibling disjoint-

ness, and coverage. So, in order to test the adequacy of the dataset, the scientist should

“try out” these constraints and see whether or not the data set adheres to them. If it does,

then Peet’s articulations may be added and the ensemble may be checked for consistency

under these same assumptions.

To fully test the CleanTax system, a complete analysis of the taxonomies, articula-

tions, and added taxonomic constraints is performed and presented to the scientist. This

4.6. Applying the CleanTax Framework 56

report presents information describing which combinations of additional assumptions lead

to inconsistencies in the taxonomies, or articulations, and, for those assumptions that do not

lead to inconsistencies, whether there are any unstated articulations that may be inferred.

These unstated articulations may be informative; they may represent new knowledge, or

they might highlight problems in the data set.

The Basic Algorithm

CleanTax begins with a formalization of the given taxonomies and expert articulations as

already described. It then converts the taxonomies and articulations into LMFOL permit-

ting the application of FOL reasoning techniques to automatically detect inconsistencies

and to infer missing articulations via a deductive closure. CleanTax then determines

the consistency of the taxonomies and articulations under each combination of additional

taxonomic constraints.

Given a pair of taxonomies, a set of articulations between pairs of taxa, and a set of

additional taxonomic constraints to test, the basic algorithm A0 is provided in Figure 4.7

(see also Fig. 4.6). The algorithm first finds which of the GTC sets of interest (gtcSet)

are consistent for each taxonomy. With three GTCs, there are 23 = 8 possible GTC sets

(e.g. {Non-emptiness}, {Sibling disjointness}, {Non-emptiness, Sibling Disjointness}). The

algorithm then finds which of the GTC sets are consistent for the provided articulations

(articulations). If there are more than two taxonomies, there will be more than one set

of articulations (one set between each pair of taxonomies). Finally, the algorithm checks

which of the GTC sets are consistent for the combined taxonomies and articulations. The

list of GTC sets to test, gtcs, is the intersection of the above sets of GTC sets.

Then, each pair of nodes in the goal set is tested for each relation in the set of relations

to test, under each GTC set condition. The result of the test can either be true, the relation

holds, false, the relation does not hold, or unclear, which can occur if the prover times out

or is incomplete. In the basic algorithm, a general theorem prover (e.g., Prover9 [W.W08])

is used for all proofs.

4.6. Applying the CleanTax Framework 57

T1

Articulations Check
consistency

Check
consistency

Check
consistency

Union
taxonomies

and
articulations

Check
consistency

Generate
goals

Prove
goals

Intersect
consistent

LTAs

T2 Report

[LTA1,…,LTAn]

[LTA1,…,LTAn]

[LTA1,…,LTAn]

Figure 4.6: Basic CleanTax Methodology

This “brute force” application of the CleanTax framework results in many proof obli-

gations. Consider determining the deductive closure under just one set of assumed con-

straints, and only deriving the closure for articulations (rather than for articulations and un-

stated intra-taxonomic relations). This would require inspecting at least 218 taxa in Benson

× 142 taxa in Kartesz × 30 R32 relations (excluding > and ⊥) = 928, 642 articulations.

Large-Scale Analysis Results

Consistency. The two taxonomies and their articulations were only consistent under the

non-emptiness GTC (N) and no-GTC conditions. The coverage GTC (C) alone introduced

inconsistencies, so any GTC combination involving C was also inconsistent. The sibling

disjointness GTC (D) introduced so many new axioms that neither Mace4 nor Prover9

could process the input with the given resources. Indeed, without GTCs there were 428

logic axioms, while adding the sibling disjointness GTC D yielded a total of 18,104 axioms,

most of the form N(x) → ¬ M(x). This demonstrates that while reasoning in Ltax1 may

be decidable, it is not necessarily tractable.

Discovered Articulations. Table 4.3 shows the counts of mir values (see section 4.3.2)

of all relationships given and discovered under the two consistent GTC sets. Note first

4.6. Applying the CleanTax Framework 58

Algorithm A0

Input: gtcSet is the set of GTC combinations we want to test, combinedAxioms is
the set of formulas generated from the alignment, articulationSet is the set of given
articulations, goals is a set of pairs of nodes to test relations between, relations is a set of
relations to test, taxonomies is the set of taxonomies in the alignment, articulationSet
is the set of articulations - one for each pair of taxonomies.
Output: a set of proof results (true, false, unclear), one for each relation tested for each
pair of goal pairs, under each GTC condition

for taxonomy in taxonomies:
goodGTCSet[taxonomy] = getConsistentGTCs(taxonomy, gtcSet)

for articulationSet in articulations:
goodGTCSet[articulation] = getConsistentGTCs(articulationSet, gtcSet)

goodGTCSet[combined] = getConsistentGTCs(combinedAxioms, gtcSet)

gtcs = intersection(goodGTCSet)
for gtc in gtcs:
for goal in goals:
for relation in relations:

proved = proveGoal(gtc, goal, relation)
if (not proved):
counter =

findCounterExample(gtc, goal, relation)
if (not counter):
print "unclear"

else:
print "false"

else:
print "true"

Figure 4.7: Algorithm A0

4.6. Applying the CleanTax Framework 59

that CleanTax found a number of new informative (the top node > = {≡,(,),⊕, !} is

not considered informative) articulations in both consistent GTC conditions, increasing the

number from the 218 provided by Peet to 550 articulations in the no GTC condition and

552 in the N GTC condition. While the original alignment contained mostly B5 relations

(and a few not-≡ relations), CleanTax discovered a significant number of disjunctive re-

lations. Each of these disjunctive relations can be considered an improvement over the

original alignment in which these relations were of the {≡,(,),⊕,!} type. Each such rela-

tion could be brought to the attention of an articulator as an opportunity to increase the

specificity of the alignment (more on this in Chapter 9). Finally, CleanTax also found a

significant number of additional B5 relations.

Relation Given relations No GTCs Type N GTC

{≡} 112 112 112
{(} 15 137 137
{)} 63 90 90
{⊕} 4 4 4
{!} 12 12 12
{≡,(} 0 28 28
{≡,)} 0 138 138
{),⊕} 0 5 5
{),⊕,!} 0 10 10
{≡,(,),⊕} 0 3 5
{(,),⊕,!} 12 11 11

Table 4.3: New mir relations found under the two consistent GTCs.

4.6.3 Modularization via Connected Subgraphs

The inconsistency of the alignment under most GTC combinations did not permit a favor-

able environment for studying the effects of different global taxonomic constraints on the

types of articulations discovered. To obtain a good environment for such an investigation,

the given taxonomies and articulations were divided into a set of 81 connected subgraphs,

each representing a species in one taxonomy and all the related taxonomic concepts in the

other taxonomy. These sub-taxonomies were then tested for consistency under each GTC

4.6. Applying the CleanTax Framework 60

Ranunculus
hydrocharoides

Ranunculus
hydrochar.

var.
stolonifer

Ranunculus
hydrocharoides

Ranunculus
hydrochar.

var.
natans

Ranunculus
hydrochar.

var.
stolonifer

Benson, 1948 Kartesz, 2004

Ranunculus
hydrochar.

var.
typicus

Ranunculus
hydrochar.

var.
typicus

= =

=

Figure 4.8: Inconsistent set of taxonomies with articulations. Dashed lines are expert
articulations.

combination.

Of the 81 sub-taxonomies, 6 were inconsistent under some GTC combination. Fig-

ure 4.8 shows an example of a discovered inconsistency under the NDC GTC combination.

We can see the inconsistency of this articulation by asserting a member of Ranunculus

hydrocharoides var. natans (Benson, 1948).

In the 75 sub-taxonomies that were consistent under all GTC combinations, between

357 and 519 new, informative mir relations were discovered, depending on the GTC com-

bination. Table 4.4 shows that as more global taxonomic constraints are placed on the

taxonomies (e.g., from No-GTCs, to C, to NC, to NCD-GTC combinations), the specificity

of discovered relationships also increases. For example, under the No-GTC condition, 357

new, informative mir relations were found and 304 of those contained some uncertainty

(were disjunctive). In comparison, under the NDC-GTC condition, 519 new, informative,

relations were discovered, only 74 of which contained uncertainty.

4.7. Contributions and Future Work 61

∅ N D C ND NC DC NDC

{≡} 111 111 111 114 111 114 114 114
{(} 33 33 38 33 64 33 38 64
{)} 96 96 105 107 137 107 116 148
{⊕} 5 5 5 5 5 5 5 5
{!} 0 0 134 0 134 0 144 144
{≡,(} 31 31 26 31 0 31 26 0
{≡,)} 44 44 35 42 3 42 33 1
{⊕,!} 0 0 0 12 0 12 5 5
{(,⊕,!} 0 0 0 5 2 5 0 0
{),⊕,!} 17 17 17 38 45 38 34 38
{≡,(,),⊕} 0 2 0 0 2 0 0 0
{(,),⊕,!} 20 20 20 4 4 0 0
{≡,(,),⊕,!} 192 190 58 158 46 158 34 30

Table 4.4: New mir relationships for each GTC combinaton in the 75 sub-taxonomies that
are consistent under the NDC-GTC combination.

4.7 Contributions and Future Work

This chapter has provided a framework for a monadic first-order logic representation of

taxonomies and articulations between them. The chapter also showed how the GTCs may

be used to determine whether or not a given taxonomy conforms to a required type of

taxonomy. GTCs may also be used to test the consistency of two taxonomies together

with articulations between them. Finally, the chapter showed how GTCs affect the types of

relations that may be inferred; as more constraints are added, the inferred relations become

more specific.

Unfortunately, the unoptimized version of the CleanTax framework is prohibitively

slow. Determining all the articulations between the two large taxonomies described in

section 4.6.2 took 46 hours on a fairly unencumbered computer equipped with single-core

3 Ghz Pentium processor. A significant part of the processing time involved overhead from

calling the reasoners hundreds of thousands of times. Future work will focus on reducing

this overhead. A more theoretically interesting approach to increasing the system’s speed is

to investigate optimizations that will reduce the number of proof obligations, and to study

the impact of trying less expressive, but more tractable logics, such as description logics,

4.7. Contributions and Future Work 62

or propositional logic. These are the subjects of the subsequent chapter.

63

Chapter 5

Optimizations

5.1 Overview and Objectives

Chapter 4 presented LT1 , a language for representing taxonomies and articulations using

monadic first-order logic, as well as CleanTax, an application of this language in a frame-

work designed to address the questions described in section 1.4. While the language and

the framework successfully answered questions about taxonomy and alignment consistency,

and were able to infer new articulations, the “tell me everything” use case studied at the

end of Chapter 4 demonstrated that the process as described can be prohibitively slow.

This chapter1 introduces a set of optimizations that increase the efficiency of the frame-

work. These optimizations are of two types: optimizations that reduce the number of

proofs necessary to answer a given question, and optimizations that use more tractable

representational languages than LMFOL.

5.2 Reducing the Number of Proof Obligations

To reduce the large number of proof obligations in CleanTax, we consider several opti-

mizations involving various lattices.
1Much of this chapter is drawn from [Tha08] and [TBL09a].

5.2. Reducing the Number of Proof Obligations 64

Ø

N D C

ND NC DC

NDC

Figure 5.1: A lattice of three global taxonomic constraints (GTCs): non-emptiness N,
sibling disjointness D, and coverage, C. When more than one GTC is applied to a taxonomy,
the relevant abbreviations are concatenated (e.g., ND when both non-emptiness and sibling
disjointness are applied.)

5.2.1 GTC Lattice Optimization.

The power set of the three GTCs, N, D, and C, gives rise to a lattice of eight GTC combi-

nations (Figure 5.1) which can be exploited to avoid unnecessary work.

Adding new axioms to a set of formulas already shown to be inconsistent will never

result in a consistent set of formulas (LMFOL is monotonic). Therefore, once a given GTC

is shown to create an inconsistency for a taxonomy or alignment, no parent nodes of that

GTC in the GTC lattice need to be investigated.

The GTC optimized CleanTax algorithm: A

In the initial CleanTax algorithm (section 4.6.2), if a GTC combination was found to be

inconsistent with one taxonomy, it was still tested with the others, and the articulations.

The GTC optimized version winnows the set of applicable GTCs down with each test,

reducing the number of tests executed and eliminating the need to do an intersection at

the end. The optimization affects how gtcSet is calculated in A0 and the changed lines

are shown in Figure 5.2.

5.2. Reducing the Number of Proof Obligations 65

Algorithm fragment A: More efficiently calculating gtcSet

for taxonomy in taxonomies:
gtcSet = getConsistentGTCs(taxonomy, gtcSet)

for articulationSet in articulations:
gtcSet = getConsistentGTCs(articulationSet, gtcSet)

gtcSet = getConsistentGTCs(combinedAxioms, gtcSet)

Figure 5.2: Calculating gtcSet in A

5.2.2 R32 Lattice Optimizations

All of the R32 lattice optimizations take advantage of the fact that the mir between two

taxa determines the truth of the rest of the relations in the lattice (section 4.3.2).

Some of the optimizations below take advantage of a binary representation of the nodes

in the R32 lattice. Each node in the R32 lattice can be assigned a binary value by assigning

a 1 to each relation that holds in the disjunction described by the node. As we have five

relations, the binary string will be five bits long. The association between place and relation

is arbitrary, but for the sake of example, the following order is used: ≡,(,),⊕, !. So, the

node in the R32 lattice representing just ≡ would be represented by 10000, and the node

representing “not includes” ({≡,(,⊕,!}) would be represented by 11011.

We start with an algorithm for calculating the true R32 relations from a mir.

Determining the R32 Relations From the Maximally Informative Relation

The algorithm in Figure 5.3 calculates the full set of R32 relations between two taxa given

their mir. Start with the binary representation of the mir and, if the mir is not already

the top of the R32 lattice, generate the next rank of nodes in the R32 lattice by generating

a new set of nodes, each equal to the binary or of the mir and a binary number which is

true at one position (with five relations, that would be the binary representations of 1, 2,

4, 8, and 16). This generates the set of nodes that are true at the next level of the R32

lattice. Then recurse, performing the same action on the newly generated nodes. Continue

5.2. Reducing the Number of Proof Obligations 66

until there are no nodes left on the todo list. There will be a great deal of redundancy, so

only place new nodes on the todo and done lists if they are not already on the list.

Determining the Maximally Informative Relation Top Down: A↓min

This algorithm uses the layer-4 nodes from the R32 lattice to determine the mir between

two taxa. Again, once mir is known for two taxa, the values of the rest of the nodes in

the R32 lattice follow. Let T4 be the layer-4 relations that are true for some pair N,M .

One can show that mir =
⋂
R∈T4

R. Thus by testing exactly 5 out of the 30 non-trivial R32

relations and combining those results, A↓min avoids all other 25 tests.

The algorithm for determining the mir from the top five relations (Figure 5.4) simply

performs the and of the binary representations of the top five relations that hold between

a given pair of taxa. The result is the binary representation of the mir node.

This algorithm for determining the mir from the truth values of the five layer-4 nodes

in the R32 lattice informs a new version of the core CleanTax algorithm.

Algorithm A↓min (Figure 5.5) is a modification of the slightly modified CleanTax

algorithm in section 4.6.2 . Rather than iterating through every relation in R32, A↓min only

tests the five nodes in layer-4 of the R32 lattice.

Determining the Maximally Informative Relation Bottom-Up: A↑min

Algorithm A↑min proceeds bottom up, starting at layer-1 in R32 and stopping as soon as a

true node is found. In the best case, one of the layer-1 nodes evaluates to true (there are

at most 5 proofs for layer-1); in the worst case no layer-4 node evaluates to true, i.e., we

know nothing about the relationship between N and M . The latter will result in 30 tests

in the lattice: recall that we skip tests with ⊥ (always false) and > (always true).

5.2.3 R32 Lattice Optimization Results

Table 5.1 shows the impact of the two R32 lattice optimizations. As shown in Chapter 4,

calculating the deductive closure of two taxonomies and a set of articulations, under even a

5.2. Reducing the Number of Proof Obligations 67

Algorithm Expand mir

Input: A mir relation, mir
Output: A set of relations implied by that mir relation

doneList = (mir)
todoList = ()
numRanks = 5
trueNodes = getImplicatedRelations(doneList, todoList)

def getImplicatedRelations(doneList, todoList):
while (relation = pop(todoList)):

pushIfNew(relation, doneList, doneList)

if (getRank(relation) < numRanks):
newTodo = pushIfNew(relation | b10000, newTodo, doneList)
newTodo = pushIfNew(relation | b01000, newTodo, doneList)
newTodo = pushIfNew(relation | b00100, newTodo, doneList)
newTodo = pushIfNew(relation | b00010, newTodo, doneList)
newTodo = pushIfNew(relation | b00001, newTodo, doneList)

if (newTodo.length > 0):
getImplicatedRelations(newTodo, doneList)

else:
return doneList

def pushIfNew(item, list1, list2):
if (not (item in list1) and not(item in list2)):

push(item, list1)

return list1

Figure 5.3: Finding all relations implied by a mir relation

Algorithm Top-Down mir Discovery

Input: trueLayer4Rels, the set of layer-4 relations that hold between a pair of nodes
Output: The implied mir relation

xmir = b11111
for relation in trueLayer4Rels:
xmir = xmir & relation

return xmir

Figure 5.4: Finding the mir between two nodes based on the truth value of the five layer-4
relations.

5.2. Reducing the Number of Proof Obligations 68

Algorithm A↓min
Input: the only difference between the input of A↓min and A0 is topFiveRelations, the
five layer-4 relations.
Output: a set of proof results (true, false, unclear), one for each relation tested for each
pair of goal pairs, under each GTC condition.

for taxonomy in taxonomies:
gtcSet = getConsistentGTCs(taxonomy, gtcSet)

for articulationSet in articulations:
gtcSet = getConsistentGTCs(articulationSet, gtcSet)

gtcSet = getConsistentGTCs(combinedAxioms, gtcSet)

for gtc in gtcSet:
for goal in goals;
for relation in topFiveRelations: # here is the optimization

proved = proveGoal(gtc, goal, relation, goalType)
if (not proved):
counter =

findCounterExample(gtc, goal, relation, goalType)
if (not counter):
print "unclear"

else:
print "false"

else:
print "true"

Figure 5.5: Algorithm A↓min

5.2. Reducing the Number of Proof Obligations 69

Algorithm A↑min
Input: the same as A0.
Output: a set of proof results (true, false, unclear), one for each relation tested for each
pair of goal pairs, under each GTC condition.

for taxonomy in taxonomies:
gtcSet = getConsistentGTCs(taxonomy, gtcSet)

for articulationSet in articulations:
gtcSet = getConsistentGTCs(articulationSet, gtcSet)

gtcSet = getConsistentGTCs(combinedAxioms, gtcSet)

for gtc in getSet:
for goal in goals:
index = 0
foundMIR = false
while (index < relations.length) and (not foundMIR)):

relation = relations[index]
proved = proveGoal(gtc, goal, relation, goalType)
if (not proved):

counter =
findCounterExample(gtc, goal, relation, goalType)

if (not counter):
print "unclear"

else:
print "false"

else:
print "true"
foundMIR = true

index++

Figure 5.6: Algorithm A↑min

5.2. Reducing the Number of Proof Obligations 70

A0 A↑min A↓min
Judgements 928,680 912,779 154,780
User time (mins) 2,768.86 2,720.19 469.99
System time (mins) 41.79 41.07 7.60
Logical steps (millions) 2,634 2,589 442

Table 5.1: Impact of optimizations on deductive closure under the non-emptiness (N) GTC.

A0 A↑min A↓min
Judgements 17,019 2,194 2,745
User time (secs) 573.59 83.61 100.47
System time (secs) 1,189.59 195.91 192.36
Logical steps (thousands) 2,484 384 394

Table 5.2: Impact of optimizations on the deductive closure under the NDC LTA for 75
sub-taxonomies.

single GTC, can involve a great number of logical tests. There is only a slight improvement

of the bottom-up algorithm A↑min over the base algorithm A0. However, A↓min reduces the

number of tests by 84% and is processed almost 6 times as quickly as the unoptimized A0.

The populated relation lattice shown in Figure 5.7 shows, for each relation under the N

GTC, the number of times the relation was true according to the optimization, the number

of times it was found true using a reasoner, and the number of times the relation was the

mir. This type of visualization using the R32 lattice can be quite useful.

The improvement of A↑min is small because the N GTC engenders very little deductive

power, so in general the relation between any two given nodes is frequently unknown,

resulting in the worst-case scenario forA↑min: all 30 relations must be checked. To investigate

the impact of the optimizations in a scenario with less uncertainty, the optimizations were

run using the 75 consistent sub-taxonomies described in section 4.6.3. As mentioned in that

section, the specificity of discovered articulations increases as more GTCs are applied to

the taxonomies. Based on this, we would expect an improvement in the A↑min optimization.

Table 5.2 demonstrates that the A↑min optimization improves relative to the A↓min opti-

mization under the NDC GTC combination, which engenders the inference of many specific

relations.

5.2. Reducing the Number of Proof Obligations 71

!⊋⊊
471,0,0

!⊋
403,0,138

"

! ⊋⊊⊕!
618,0,0

!⊋⊊⊕
597,597,5

!⊋⊊!
583,583,0

!⊋⊕!
422,422,0

! ⊊ ⊕!
296,296,0

⊋⊊⊕!
355,355,11

!⊋⊕
412,0,0

!⊊⊕
296,0,0

⊋⊊⊕
314,0,0

!⊋!
403,0,0

!⊊!
292,0,0

⊋⊊!
305,0,0

⊋⊕!
172,0,10

⊊⊕!
156,0,0

!⊕!
116,0,0

!⊊
292,0,28

!⊕
116,0,0

⊋⊊
305,0,0

⊋⊕
162,0,5

⊊⊕
156,0,0

⊋!
153,0,0

⊊!
152,0,0

⊕!
4,0,0

!!
112,0,0

!
112,0,112

⊋
153,0,153

⊊
152,0,152

⊕
4,0,4

!
0,0,0

Figure 5.7: The populated relation lattice shows, for each relation under the N GTC, the
number of times the relation was true according to the A↓min optimization, the number of
times it was found true using a reasoner, and the number of times the relation was the mir.

5.3. Language Optimizations 72

5.2.4 Summary of Lattice Optimizations

The optimizations described in this section go a long way towards boosting the efficiency of

CleanTax, dropping the time to calculate the deductive closure of a large alignment from

46 hours to under 8. Even so, 8 hours still seems excessively long. A large part of the time

is still spent on overhead involved in calling a reasoner many thousands of times. Reducing

this overhead will help, and remains to be done. Another improvement may come from

shifting from monadic first-order logic to some less expressive, but more tractable logic.

5.3 Language Optimizations

This section begins with a description of language expressiveness. Then it describes ex-

periments with logics less expressive than LMFOL. Using a less expressive language will

restrict the types of taxonomies and articulations that can be represented, and the types

of questions that may be asked. However, depending on the applications, these restrictions

may not be burdensome, and the calculus used to reason with a less expressive language

may afford more rapid reasoning.

5.3.1 Expressive Power

A formal language is a set of symbols, a set of formulation rules for combining those symbols

into well formed formulas, and often a semantics assigning a meaning to the symbols and

well formed formulas [EFT94]. The expressive power of a language is described by the set

of sentences it can define. We say that language Lα is at least as expressive as language

Lβ, denoted Lα ≥ Lβ if for every expression in Lβ there is an equivalent expression in Lα.

Two languages have the same expressive power if Lα ≥ Lβ and Lβ ≥ Lα
The goal of working with less expressive languages is to reduce the complexity of pro-

cessing within those languages. For example, while determining satisfiability in first-order

logic is undecidable, it is decidable in propositional logic, and most Description Logics.

Within Description Logics, very restricted languages such as the Frame Language version

5.3. Language Optimizations 73

FL− [LB87], and AL [SSS91] can answer subsumption queries in polynomial time, while

small changes to these languages, such as adding role restrictions to FL− or intersection to

AL [DLNN97], render the problem of answering subsumption queries NP-complete.

5.3.2 Complexity

Different languages have different levels of complexity. The complexity of a language is

reflected in the amount of time it takes to solve decision problems as the size of the input

to those problems grows. A decision problem is one that has a yes-no answer, depending

on the inputs. For example, a basic decision problem in monadic first-order logic is, given

some LMFOL formulas Φ and ϕ does Φ ` ϕ. There are many classes of complexity, but this

dissertation deals primarily with four: P, NP-complete, EXP-complete, and NEXP-

complete. The complexity of each of these classes may be defined in terms of either the

complexity class NTIME(f(n)), which is the set of decision problems that can be solved

by a non-deterministic Turing machine using O(f(n)) time and unlimited space, or DTIME

which is defined similarly, but for deterministic Turing machines. The following definitions

of the above complexity classes are listed in order of increasing complexity. Given a prob-

lem with input size n:

P =
⋃
k∈N DTIME(nk)

NP =
⋃
k∈N NTIME(nk)

EXP =
⋃
k∈N DTIME(2n

k)

NEXP =
⋃
k∈N NTIME(2n

k)

The term complete when attached to a given class means that there is a polynomial-time

reduction of every other problem in that class to that problem. Monadic first-order logic,

for example, has been shown to be NEXP-complete [BGW93]. The languages discussed

below, Description Logics, propositional logic, and subsets of the RCC calculus, will have

5.3. Language Optimizations 74

a lower level of complexity.

5.3.3 Description Logics

Description Logic (DL) is a family of concept-based knowledge representation languages.

The syntax of all DLs has a set of unary predicates called concept names, a set of binary

relations called role names, and a set of constructors used to define concept names and

role names. Each variety of DL implements a different set of constructors. The most basic

DL is called AL (Attributive Language) [SSS91]. To give a feel for what a simple DL

looks like, the syntax and semantics of AL are provided in section A.1.3. The key features

of AL are that concepts are defined either by simply stating that something is an atomic

concept, or by defining a concept by negating an atomic concept or by intersecting two

concepts. Concepts can also be defined as those things fulfilling a certain role. Roles can

be defined in two ways: using a value restriction (e.g., “all red things”) or through limited

existential quantification (e.g., “all things with at least one child”). For example, the

concept “parent” could be defined as follows: Parent = Personu∃hasChild.>. Note that

in AL, the object of the hasChild role cannot be restricted, so according to this definition,

the child of a Person does not have to be a Person. In order to assert such a restriction,

a more expressive DL must be used (e.g., one called ALE).

DLs can be very expressive, and, unlike full LFOL, still decidable. Two of the main

representations for the semantic web, OWL-DL and OWL-Lite are both varieties of DL,

each with a different complexity. The undecidibility of first-order logic has driven many

researchers studying the alignment problem to use more tractable, but still fairly expressive

Description Logics. For example, MoA [KJH+05] infers equivalence and subsumption artic-

ulations in OWL-DL documents using lexical information about concept names. Similarly,

OLA [EV04] restricts itself to the OWL-Lite Description Logic.

Despite the popularity of DL, especially in the form of OWL-DL, its utility in the

context of this thesis is uncertain for two reasons. First, it is unclear how to model even the

basic RCC relations in a tractable way using DL. An attempt by [KG05] models regions as

5.3. Language Optimizations 75

classes. Each region must be regular meaning that it is non-empty, and it must contain all its

interior points. For a region X, the regularity condition is captured by the axioms X(x) and

X ≡ ∃R.(∀R.X), where R is a symmetric and transitive relation. This encoding was recently

implemented in [SS09] using an OWL 2 reasoner (OWL 1 did not support some features

needed by the encoding). The authors found that the second axiom in regularity condition

above made the translation intractable with even a small number of concepts. In reaction,

they proposed a hybrid reasoner that applied traditional RCC algebra reasoning for RCC

problems, and DL reasoning in other cases. This approach was also proposed in [GBM07],

who provide an excellent review of the various unsatisfactory attempts to encode RCC

relationships and reasoning in DL. The second problem for DL is the disjunctive relations

used in CleanTax. Neither [KG05] nor [SS09] attempted to encode disjunctive RCC

relationships in DL. Although there are fairly clear encodings for the basic relations, it is

unclear how to represent disjunctive relations, such as the articulation that two concepts

N,M are either equal or they are disjoint. The sentence (N ≡ M) t (N uM ≡ Ø) is

not a syntactically legal sentence in DL. The sentence MyDisjunct ≡ ((¬N tM) u (N t
¬M))t(¬M t¬N)) is legal, but means “the concept MyDisjunct represents the collection

of instances that are either in both N and M or not in N or not in M” which is different

from the disjunctive sentence “N and M are either equal or they are disjoint.” Stating

such a disjunctive sentence in DL is possible, but requires a trick called a spypoint [Hor07].

A spypoint is an instance x that is related to every other instance via a given role p.

The following recipe uses the spypoint to make disjunctive assertions. As an example,

consider the situation in which we want to test the disjunctive sentence “N and M are

either equivalent or disjoint” given two disjoint concepts N,M (N ≡ ¬M). To state (and

test) this disjunction using a spypoint, create two new concepts called Spy and NonSpy.

State that N and M are subsumed by NonSpy (N v NonSpy, M v NonSpy). Create

a role p, with a domain of Spy and a range of NonSpy. Create another role invP, which

is the inverse of p (if p(x,y) then invP(y,x)). Now, assign individuals n, m, and s, to the

concepts N, M, and Spy respectively, stating further that n, m, and s are all different

5.3. Language Optimizations 76

individuals. Also, relate m and n to s via the p role: p(s,n) and p(s,m). With all that in

place, we can test disjunctive sentences by defining the Spy concept. For example, defining

the Spy concept as Spy ≡ ∀invP.((¬N tM) u (N t ¬M)) will result in an inconsistency,

because Spy is being defined as all things satisfying an unsatisfiable property. However,

defining the Spy concept as Spy ≡ ∀invP.(((¬N tM)u (N t¬M))t (¬N t¬M)) will not

result in an inconsistency, because this property can be satisfied. Needless to say, applying

the spypoint trick to even this simple situation is fairly complex. Adding the machinery

necessary to quantify uncertainty as described here may reduce any efficiencies afforded by

the more tractable language. Furthermore, it is not clear that DL reasoners are any faster

than LFOL reasoners given the monadic-logic representation in Chapter 4, reducing the

benefits of moving to a Description Logic. However, applying the CleanTax framework

to another formal language, such as a Description Logic, will demonstrate its usefulness as

a benchmarking tool. Researching the possibility of using a DL to represent Ltax remains

an important aspect of future work.

5.3.4 Propositional Logic

An even less expressive logic than any Description Logic is propositional logic. [GSY04]

described the S-Match ontology alignment framework, which uses propositional logic to

infer matches in the schema matching problem. Their articulations were restricted to a

subset of the R32 relations, namely {≡}, {≡,(}, {≡,)}, {!} and {≡,(,),⊕, !}. Even with

this restricted set of relations, their system was more expressive than the other schema

matching systems they describe.

Propositional logic is an attractive possibility from a complexity standpoint. While

basic reasoning tasks in monadic first-order logic and OWL-DL are both NEXP-complete,

reasoning tasks in propositional logic have an NP-complete complexity and should therefore

scale better.

Two propositional encodings for RCC-5 exist: Bennett [Ben94] describes a propositional

representation of the B5 and Pham [PTS06] presents a different propositional encoding for

5.3. Language Optimizations 77

Allen’s interval algebra for temporal relations [All83] that can be modified to apply to

RCC-5.

Bennett’s representation, described in Table 5.3 covers the B5 using two sets of formulas

- one set describing the formulas that must hold for a given relation, and a second set

describing the formulas that must not be entailed by the first set. Bennett’s representation

does not cover the entire R32.

Relation Model Constraint Entailment Constraints
X ! Y ¬(X ∧ Y) ¬X,¬Y
X ⊕ Y - ¬(X ∧ Y), Y → X, X → Y , ¬X,¬Y
X (Y (X → Y) Y → X, ¬X,¬Y
X) Y (Y ← X) X → Y , ¬X,¬Y
X ≡ Y (X ↔ Y) ¬X,¬Y

Table 5.3: Bennett’s [Ben94] propositional representation of B5

Pham’s encoding provides a more complete translation of arbitrary constraint satis-

faction problems (CSP). Roughly speaking, given a set of nodes N and a set of relations

R, the encoding creates a new variable for each n × n × r condition (n ∈ N, r ∈ R).

The encoding then adds propositional sentences that constrain the relationships between

these nodes in a way that mirrors the original constraint satisfaction problem. Given a

CSP of n nodes and b relations, the encoding results in a propositional statement with

O(n2 ∗ b) variables and O(n3 ∗ b2) clauses. This increased problem size may lead to poor

scaling. Adding axioms for the coverage GTC in this setting is not straightforward. Given

a node A and its chldren B and C, A is covered by its children if for all known regions

X,PP (X,A)→ ¬(DC(X,B)∧DC(X,C)) where PP (X,A) is a new variable representing

the (relation between X and A.

Recent work by [WW09] has shown that, at least in the case of networks restricted to B5

relations, a dedicated RCC reasoner such as GQR [WWG09] will outperform a propositional

encoding of an RCC-based problem. However, using these propositional encodings to permit

the statement of the coverage constraint may lead to reasoning that can outperform general

LFOL reasoners. Research addressing this question remains as future work.

5.3. Language Optimizations 78

5.3.5 R28
5 : A Tractable Subset of RCC-5

The monadic logic representation described in Chapter 4, as well as the Description Logics

representation and propositional logic representation of R32 described above are all decid-

able, but still have a greater than polynomial-time complexity when answering entailment

questions. Renz and Nebel [RN99] showed that there is a subset of R32, called R28
5 which

can be reasoned over in polynomial time. The subset they describe is the maximal subset

of R32 which also contains B5.

The following theorem by Jonsson and Drakengren [JD97] gives a precise account of the

complexity of deciding these questions by identifying all maximal tractable subalgebras of

R32.

Theorem 5.1 ([JD97]). Let R ⊆ B5 be any of the 32 subsets of B5. Then deciding whether

ΨR is satisfiable is polynomial iff R is a subset of one of R28
5 ,R20

5 ,R17
5 , or R14

5 , and NP-

complete otherwise.

Thus, in general we can expect reasoning with combined relations from R32 to be efficient

for large sets of constraints only if we consider combined relationships that correspond to one

of the four maximal classes R28
5 , R20

5 , R17
5 , or R14

5 (or subsets of those); for other constraint

sets over R32, not falling under those four, answering entailment questions becomes an

NP-complete problem.

For our purposes, the subalgebra R28
5 (see Appendix A.2) is the most interesting: it

contains 28 out of the 32 possible relations in R32. The only excluded relations are {(,)},
{(,),≡}, {(,), !}, and {(,),≡, !}. Note that all four of these contain {(,)}, i.e., the

disjunction (N (M)∨(N)M). In practical settings it does not appear to be common that

one is uncertain whether (N (M) or rather (N)M). For example, if the taxonomic ranks

of N and M are known, then one of these cases can always be eliminated. The excluded

cases could potentially arise as (intermediate) results of a larger reasoning problem. 2

Summarizing, we obtain:
2Note, however, that the excluded cases did not arise in Tables 4.3 and 4.4.

5.3. Language Optimizations 79

Corollary 5.2. Reasoning with arbitrary LT1 taxonomy constraints can be infeasible

(NEXPTIME-complete) in general. Reasoning with R28
5 taxonomy constraints is efficient

(i.e., deciding satisfiability is in polynomial time).

Given these observations, it should be possible to optimize the reasoning problems in

CleanTax even more than was possible with the shift to propositional logic.

5.3.6 Optimization Results

Time to Calculate the RCC-5
Deductive Closure (N GTC)

0

50

100

150

200

250

300

350

400

0 2 4 6 8

Alignment Size

T
im

e
 (

se
co

n
d

s) Unoptimized
Monadic
Optimized Monadic

RCC

Figure 5.8: Time in seconds to determine RCC-deductive closure for the 75 sub-taxonomies
under the N GTC for the unoptimized monadic logic, optimized monadic logic, and RCC-
algebra reasoners.

Figure 5.8 compares the amount of time necessary to determine the RCC deductive

closure between sub-taxonomies of various sizes under the non-emptiness GTC under dif-

ferent reasoning scenarios. For each sub-taxonomy, the RCC deductive closure in this case

was restricted to calculating the mir for each possible articulation. The alignment size

is the number of such articulations divided by 10. As can be seen in the figure, the un-

optimized monadic logic version takes significantly longer than the other two conditions.

5.3. Language Optimizations 80

The A↓min optimized version fares considerably better. Both monadic logic versions used

the iProver [Kor08] first-order theorem prover. Comparisons between several current first-

order theorem provers showed iProver to perform the best for the types of logic problems

involved here. GQR [WWG09], currently the fastest RCC reasoner was chosen for the RCC

condition.

Time to Calculate the RCC-5
Deductive Closure (N GTC)

0

5

10

15

20

25

0 2 4 6 8

Alignment Size

T
im

e
 (

se
co

n
d

s)

Optimized Monadic
RCC

Figure 5.9: Time in seconds to determine RCC-deductive closure for the 75 sub-taxonomies
under the N GTC for the optimized monadic logic, and RCC-algebra reasoners.

Figure 5.9 removes the unoptimized monadic logic results so that the optimized monadic

logic results can be better compared to the RCC results. Figure 5.10 shows how well the

RCC reasoner scales with larger networks. Clearly, when an RCC reasoner can be applied

(only in the N and ND GTC conditions), it is far superior to the full first-order reasoner.

5.4. Parallelization 81

Figure 5.10: Time in seconds to determine RCC-deductive closure for the RCC-algebra
using large alignments under the N GTC.

5.4 Parallelization

As has been demonstrated, calculating the deductive closure of an alignment can involve

many small, independent, reasoning tasks. The independence of these tasks presents an

opportunity to process them in parallel. Another kind of optimization would be to develop

algorithms for determining the best way to allocate reasoning tasks across a computer

cluster. The current implementation of the CleanTax system includes mechanisms for

utilizing a cluster using the Sun Grid Engine [Gen01]. However, the current algorithms for

dividing tasks among the cluster nodes do not leverage the parallelism very well. Future

work will investigate optimal strategies for deploying multiple independent reasoning tasks

across a cluster of nodes.

5.5. Contributions and Future Work 82

Language Complexity Citation

First-order logic undecidable [Chu36, Tur36]
Monadic first-order logic NEXPTIME-complete [BGW93]
OWL DL NEXPTIME-complete [BCM+03]
OWL Lite EXPTIME-complete [CGL+05]
Propositional Logic NP-complete [Coo71]
RCC-5 R32 NP-complete [JD97]
RCC-5 R28

5 P [JD97]
RCC-5 B5 P [Neb95]

Table 5.4: Some formal languages and their complexity

5.5 Contributions and Future Work

This chapter presented a number of optimizations aimed at reducing the number of proof

obligations necessary to calculate a deductive closure on an alignment. The optimizations

were shown to have different efficacy depending on the number of constraints placed on the

taxonomies. Although the optimizations were somewhat effective in reducing the time nec-

essary to calculate the closure in the large-scale application of CleanTax, the framework

could still use some acceleration. One approach for future work is to apply other LFOL

reasoners, such as Vampire [RV02], and to reduce the overhead created by calling reasoners

hundreds of thousands of times. An alternate approach is to explore other subsets of first-

order logic. The second half of this chapter covered three possibilities: Description Logics,

propositional logic, and the R28
5 subset of RCC-5. Table 5.4 summarizes the languages

discussed here, with the computational complexity of those languages.

Finally, the independence of the many reasoning tasks involved in calculating the de-

ductive closure of an alignment lends itself to parallelization on a computer cluster. Future

optimizations will aim toward optimal utilization of multiple CPUs.

83

Chapter 6

Merging Taxonomies

6.1 Overview and Objectives

This chapter1 focuses on merging multiple taxonomies based on a given alignment. The

primary contribution of this chapter is a set of algorithms for merging taxonomies in a way

that results in a new, unified taxonomy that maintains links to the original sources. The

approach has the following main advantages:

RCC-Based Articulations. Unlike the articulation relationships supported in most on-

tology merging systems [DMQ05, NM03, KV04, KVS06, SM01b], CleanTax uses articu-

lations based on RCC relationships. As already discussed, RCC-based articulations mirror

the articulations seen in biological taxonomic alignments [KSBG00, FPW07]. The RCC

algebra also supports the representation of incomplete knowledge via explicit disjunctive

relationships between taxa.

Merge Results as Taxonomies. Because the result of a merge is itself a taxonomy, it is

amenable to the application of known taxonomic operations. For example, from a merged

taxonomy we can determine if the merge result adheres to specific taxonomic constraints,
1Much of this chapter is drawn from [TBL08] and [TBL09b].

6.2. Related Work 84

if it is logically consistent, if it contains synonyms, if it contains uncertainty that can be

reduced, or if it contains redundant articulations.

Links to Original Sources. As will be demonstrated in Chapter 7, merged taxonomies

that contain links to source taxonomies may be used by applications such as data aggre-

gators that combine observations of species from many data sources (occurrence counts,

height and weight measurements, etc.) – where each source may use a different “field

guide” (species taxonomy). For example, using a merged taxonomy, it becomes possible to:

determine if two datasets contain observations of the same species even when the species

are described using different taxonomies; convert datasets into equivalent ones but with

a different taxonomy; and discover datasets via concepts drawn from familiar, underlying

taxonomies [DMQ05].

Simplified Taxonomic Views. A single merged taxonomy can also help users under-

stand the effect of articulations between source taxonomies. Although a large set of artic-

ulations might be consistent, it still may be difficult to understand all implications simply

by considering pairwise combinations of taxa. Providing a minimal “taxonomic” view of

the product of the alignment can help a user understand the impact of an alignment and

refine it as necessary.

6.2 Related Work

Taxonomies may be seen as simplified ontologies. There has been a considerable amount of

work on merging ontologies. Much of this work has focused on using instances [SM01a] or

lexical information in the names and definitions of classes [KJH+05] to automatically gen-

erate articulations between concepts in separate ontologies. The ontologies are then merged

together based on these articulations. The use of instances and lexical information in these

systems differs from the work described here, which focuses specifically on the structure

of the taxonomies being merged (i.e., the concepts, or taxa, and their relationships). Of

6.2. Related Work 85

the many tools and approaches for ontology merging, the OntoMerge [DMQ05], Chimæra

[MFRW00a, MFRW00b], and iPrompt [NM03] systems are most similar to CleanTax.

In OntoMerge, the merge of two ontologies is the union of the axioms defining the ontolo-

gies and the articulations between them. The approach employed by OntoMerge is meant

to assist in the translation of data represented using terms from one ontology into data that

can be represented using another ontology. In addition to data translation, OntoMerge is

meant to support query answering between ontologies, so that queries stated using terms of

one ontology may be rewritten into queries over other ontologies. In both of these scenarios,

the merge must maintain connections to the source ontologies. Unlike CleanTax, which

uses relations drawn from the RCC-5 algebra, articulations in OntoMerge are represented

using an enriched full first-order logic (WebPDDL). The result of merging ontologies in

OntoMerge is represented as a set of first-order logic formulas, whereas in our approach we

always construct a new “unified” taxonomy T having the structure defined above. This

taxonomy can further be simplified in our approach, resulting in taxonomic merges that

are often more intuitive and easier to understand for end users.

The Chimæra and iPrompt systems differ from OntoMerge in that their goal is primarily

to create a new ontology from the source ontologies. Chimæra and iPrompt’s merges

involve fusing identical terms in the source ontologies into a new term, and determining

the subsumption and disjointness relations between the classes in the separate ontologies.

Unlike both CleanTax and OntoMerge, these systems are interactive, giving users hints

about how concepts in the separate ontologies may relate. Whereas CleanTax restricts

articulations to relations covered by the RCC-5 algebra, Chimæra and Prompt use frame-

based and Description Logic based representation languages. Finally, unlike OntoMerge and

CleanTax, determining the relationships among source concepts from a merged ontology

is not supported by Chimæra and iPrompt (although iPrompt does maintain a separate

log describing the process used in creating the merged ontology). Maintaining these source

relations is critical for applying merged taxonomies, e.g., for data discovery and integration.

6.3. Desiderata 86

A

B C

1

2 3

(a)

B C 2 3

(b)

!

T1 T2
T3

!12 = {B(x) "#A1(x),

 C(x) "#A1(x),

 B(x) "¬C(x),…}

(c)

! ! ! !

[A,1]

Figure 6.1: Given the alignment in (a), the merge in (b) violates all the described desiderata,
except for D5 (closure). The merge in (c) shows a violation of D5.

6.3 Desiderata

Listed here are a number of desirable features that systems for creating, using, and managing

taxonomy merges should have, along with descriptions of how the features are supported

by CleanTax.

The following assumes two taxonomies T1 and T2, and a set A12 of articulations between

them. As usual, taxonomies and articulations in CleanTax are formalized as sets of first-

order formulas. For the taxonomies and articulations defined above, we denote the union

of their respective first-order formulas as:

Φ12 = ΦT1 ∪ ΦT2 ∪ ΦA12 .

We denote the taxonomy T3 resulting from the the merge of T1 and T2 as:

T3 = T1 ⊕A12 T2.

6.3.1 Desiderata for Merge Results

The following desiderata focus on desirable features of the output (merge result) of a merge

operation.

6.3. Desiderata 87

(D1) Conservative. The result of a merge should preserve all consequences of the union

of the source taxonomies and articulations. Formally, if Φ12 |= ϕ, then T3 |= ϕ. When this

is true, we can say the merge result is conservative: what was true before is still true—

consequences are preserved. For example, the merge of the alignment in Figure 6.1(a) shown

in Figure 6.1(b) violates this desiderata because the disjointness between taxa 2 and 3 is

not maintained. One ramification of this desiderata is that it places restrictions on merge

operations that attempt to simplify the representation of the merge result (i.e., it should

still be possible to obtain all consequences of the alignment via the simplified version of the

result).

(D2) Sound. The result of a merge should not introduce consequences that do not fol-

low from the alignment. We consider two different notions of soundness: soundness and

soundness under renaming. In soundness, all inferences that follow from the merge result

should also be true of the alignment: if T3 |= ϕ then Φ12 |= ϕ. Soundness is violated if

the merge result includes new taxa that did not appear in either of the source taxonomies,

e.g., if the merge result includes new taxa representing the fusion of equivalent source taxa.

On the other hand, soundness under renaming is not violated by taxa that have been in-

troduced during the merge if these taxa are equivalent to taxa in the original taxonomies.

For example, if the relation N) M ′ (i.e., N is a proper superset of M ′) is in the merge,

where N is a taxon in one taxonomy and M ′ is a taxon created during the merge, strict

soundness will always be violated (because M ′ is not mentioned in either T1, T2, or A12).

However, if M ≡M ′ where M is in one of the taxonomies, and N)M is a relation in the

original alignment, then soundness under renaming is not violated. Figure 6.1(b) violates

both soundness and soundness under renaming because it introduces disjointness between

taxa C and 2 and this disjointness does not follow from the alignment in Figure 6.1(a).

(D3) Source Maintaining. Many of the use cases for a taxonomic merge operator re-

quire a connection between the merged taxonomy and the source taxonomies. This type

6.3. Desiderata 88

[A,1]

[C,2] [B,3]

A

B C

1

2 3

!

!

! [A,1]

[C,2] [B,3]

A

B

C

!

!

!

(a) (b) (c)

T1 T2 T3 T3.T1

Figure 6.2: Projecting Taxonomy 1 from the Merge.

of connection is required, e.g., to translate datasets from one taxonomy to another. It is

also required to query one taxonomy using terms from a second. In both of these cases,

without the connection between the merged taxonomy and the sources, there is no way to

determine how the terms in the source taxonomies relate to those in the merged taxon-

omy. Approaches such as OntoMerge [DMQ05] contain these types of connections because

the merged ontologies are precisely the formulas derived from the source ontologies and

articulations. Alternatively, in approaches such as iPrompt [NM03], these connections are

maintained in a more indirect way, e.g., by recording the decisions made during the creation

of the merge result, or in a separate mapping file. However, the connections between source

taxonomies and the merge result that are maintained using iPrompt’s provenance-based

mechanism are difficult to exploit in data translation tasks.

To help leverage the applicability of a source-maintaining merge result, we introduce

the “source projection” of a merged taxonomy. Given a merged taxonomy T3 derived from

taxonomies T1 and T2 and articulations A12, the source projection (or simply projection)

of the merge result provides linkages to the source taxonomies. For example, Figure 6.2(b)

shows a merge of the alignment in Figure 6.2(a). The projection of T1 from T3 in Fig-

ure 6.2(c), denoted T3.T1, shows how the taxa in T3 relate to the taxa in T1. Note that

projection does not recreate the entire source taxonomy. It simply provides linkages from

the merge to its sources. Figure 6.3 shows how the projection might be used in a merge.

Figure 6.3(a) shows three taxonomies and two sets of articulations. After merging T1 and

6.3. Desiderata 89

[A,1]

[C,2] [B,3]

(b)

T4

[A,1]

[C,2] [B,3]

(c)

T4.T2

A

B C

1

2 3

T1 T2

(a)

!

!

!

1

3

2

!

!

!

X

Y Z

T3
!

!

!

T3

X

Y Z

T3

X

Y Z

!

!

!

A12 A23 A43

?

A23

Figure 6.3: Using the Projection.

T2, the resulting taxonomy might look like T4 in Figure 6.3(b). When the merge of T4 is

attempted, the articulations in A23 cannot apply because of the renamed nodes in T4, and

the absence of a known set of articulations between T4 and T3. To resolve this mismatch

between the taxa in T4 and those referenced in A23, T2 is projected from T4 in Figure 6.3(c),

and this projection provides connection points for the A23 articulations. More concisely,

T4 = ((T1 ⊕A12 T2).T2)⊕A23 T3

.

The merge in Figure 6.1(b) violates the source maintaining desiderata because there is

no connection between taxon [A,1] in the merge and either taxon A or 1. In other words,

T3.T1 cannot be calculated.

6.3. Desiderata 90

6.3.2 Desiderata for Merge Operations

The following desiderata focus on desirable properties of the merge operation itself:

(D4) Closed. The result of a merge operator should be output as a taxonomy. If the

result of the merge operation is itself a taxonomy, all of the operations that apply to

taxonomies may also be automatically applied to the merge result. These operations include

checking the merge result for consistency, displaying the result visually, determining the

minimal set of axioms to describe the merge result, and potentially merging the result with

additional taxonomies. The set of logic axioms in Figure 6.1(c), though it may represent a

merge result that satisfies all other desiderata, is not a taxonomy according to our definition

of a taxonomy; it has neither a specified set of taxon names N , nor a specified partial order

4N .

(D5) Associative and Commutative. Given a sequence of (e.g., binary) merge opera-

tions, the order in which the operations are executed should not matter: (T1⊕A12 T2) ⊕A23

T3 = T1 ⊕A12 (T2 ⊕A23 T3). Besides being more intuitive for users, this desiderata is also

important for optimization within systems for managing taxonomies. For example, if T2

and T3 have been merged in the past, and the result is easily retrievable, it would be ben-

eficial to be able to use that cached result when determining (T1 ⊕A12 T2) ⊕A23 T3. The

merge result in Figure 6.1(b) loses associativity in a merge like (T1⊕A12 T2)⊕A23 T3 because

taxon 1 in T2 no longer exists in the merge result; it is replaced by taxon [A,1]. This

replacement of taxon names means the articulations in A23 involving taxon 1 from T2 will

not apply to the merged taxonomy resulting from T1 ⊕A12 T2, and so will not be reflected

in the subsequent merge with T3. Similarly, given two taxonomies, the order in which they

are provided in a merge operation should not matter, i.e., commutativity should also hold:

T1 ⊕A12 T2 = T2 ⊕A21 T1.

Finally, it is also desirable for a taxonomy merged with itself to result in the original

taxonomy, i.e., idempotence should also hold: T1 ⊕A11 T1 = T1.

6.4. Taxonomy Merging in CleanTax 91

A

B C

1

2 3

!

!

!

(a)

A

B C

1

2 3

!

!

!

(b)

[A,1]

[B,3] [C,2]

(c)

T1 T2 T1 T2 T3

Figure 6.4: Merging with and without fusing equivalent taxa.

(D6) Minimal. A taxonomy free of redundant information is often easier to use and un-

derstand. For example, the alignment in Figure 6.4(a) could be merged as in Figure 6.4(b);

however, this merge contains a great deal of redundant information. Combining equivalent

nodes, as in Figure 6.4(c) eliminates the redundant information and creates a merge that

is easier to understand.

(D7) Scalable. As described above, merge operations should be able to scale-up to large

taxonomies, containing many articulations, while preferrably providing reasonable response-

time, e.g., for articulation providers so they can quickly see merge results, for systems man-

aging taxonomies, and for systems performing taxonomy-based data discovery, translation,

and integration services.

The following section presents a merge algorithm that satisfies each of the above desider-

ata.

6.4 Taxonomy Merging in CleanTax

The merge algorithm begins by using a reasoner to calculate the deductive closure of the

union

Φ12 = ΦT1 ∪ ΦT2 ∪ ΦA12

6.4. Taxonomy Merging in CleanTax 92

of the logic axioms describing the source taxonomies and the articulations. This type of

merge is much like that described in the OntoMerge system [DMQ05], whose merge result

is represented by the set of logic statements rather than as a new taxonomy (violating the

closure requirement of Section 6.3).

CleanTax constructs a taxonomic merge by coercing Φ12 into the signature for a

taxonomy T = (N,4N ,Φ). This step consists of determining the taxa involved in the

merged taxonomy, deriving the transitive reduction of the partial order describing the

relationships between those nodes, and deriving the additional taxonomic constraints.

We determine N,4, and Φ initially as follows. N is simply the set of taxa that appear

in the initial taxonomies. The transitive reduction 4 is determined by constructing a graph

of the taxa in N where each taxon is a node, and there is a directed edge between any two

taxa N1 and N2 when the R32 relation (or {≡,(} can be deduced from the deductive

closure. Once this graph has been constructed, the transitive reduction may be determined

using a standard transitive reduction algorithm [AGU72]. Finally, Φ is simply the union

ΦT1 ∪ ΦT2 ∪ ΦA12 .

Once this initial taxonomy is formed, the final merge is created by merging taxa found

to be equivalent, due to provided or inferred articulations.

We define an equivalence relation on N such that:

a ∼ b if Φ |= ∀x : a(x)↔ b(x),

where the equivalence class of a ∈ N is [a] = {x ∈ N | x ∼ a}. We say that taxonomy T

has synonyms if for some a, b ∈ N with a 6= b we have that a ∼ b; otherwise T is called

synonym-free. Using this definition we can construct a unique, synonym-free version of the

6.4. Taxonomy Merging in CleanTax 93

initial merge result. We call this simplified version a quotient taxonomy T/∼ such that:

N/∼ = {[a] | a ∈ N},

4/∼ = {([a], [b]) | [a] 4 [b] if a 4 b},

Φ/∼ = {[ϕ] | ϕ ∈ Φ}.

Here for every FO formula ϕ, we define its quotient [ϕ] to be the formula where each atom

a(x) has been replaced by the atom [a](x).

We briefly describe how the above merge algorithm satisfies the desiderata of Section 6.3.

First, based on the deductive closure, the results produced by the merge operation are

conservative and sound under renaming. Namely, all consequences of the union of the

source taxonomies and articulations are preserved, and no new information has been added

to the merge result that could not be derived from the original taxonomies and articulations,

where each taxon in N/∼ is equivalent to at least one source taxon. Merge results are also

source maintaining. In a quotient taxonomy, each taxon [a] = {x1, x2, . . . } for a ∈ N/∼

implicitly carries its linkages to corresponding source taxa, where the source projection

operation simply selects the desired source taxa of [a]. For instance, for the [A,1] taxon

in Figure 6.4(c), N = [T1.A, T2.1] such that the source projection T3.T1 is {(T3.A1, T1.A),

(T3.B3, T1.B), (T3.C2, T1.C)}. This projection can then be either rendered into a set of

first-order axioms, or can be used to rewrite a set of articulations. In the former case, each

pair in the projection (m,n) would add an axiom ∀x.m(x) ↔ n(x) to Φ. In this case we

can define (T1 ⊕A12 T2).T2 = (NT3 ∪NT2 ,4T3 ,ΦT3 ∪ ΦT3.T2). In the latter case, each taxon

in the set of articulations matching the second element of a pair in the projection will be

replaced with the name of the first element of that pair.

Furthermore, the merge operation itself is closed since it results in a taxonomy T as

defined above. The merge is also commutative since it is possible to invert a set of artic-

ulations, and similarly associative under source projection. For quotient taxonomies, the

merge operation is idempotent. That is, given two identical quotient taxonomies the same

6.5. Experiments and Discussion 94

quotient taxonomy is returned.2 Quotient taxonomies can be considered minimal views

being synonym-free and consisting of the transitive reduction. And finally, as we describe

further in the following section, the merge operation can scale-up to large taxonomies, in

part due to CleanTax’s use of RCC constraints.

6.5 Experiments and Discussion

The merge algorithm has been implemented within the CleanTax system and tested using

the largest alignment in the Ranunculus dataset: one taxonomy covering 218 taxa, the other

covering 142 taxa, with 206 articulations between them. Each taxonomy is three levels deep

covering the genus, species, and variety biological ranks.

The first step in creating the merge is translating the taxonomies and articulations

into monadic first-order logic and determining all the relationships implied by the resulting

axioms. Once these calculations have been made, the merge is computed very quickly. The

limiting factor of the algorithm is the calculation of the transitive reduction, for which we

used the tred filter that comes with the graphviz software package3. Tred uses a depth-

first search algorithm of complexity O(V ∗ E) [AGU72, IR88]. In the current context, V

is the number of taxa and E is the number of articulations describing inclusion maximally

informed relations (either N (M or N{≡,(}M). The other steps of the algorithm are

O(E) where E is the number of mir articulations. On average (after 5 runs with little

variance between them) merging the two taxonomies described above took 84 milliseconds,

62% of which was spent determining the transitive reduction.

A primary advantage of the CleanTax framework is the ability to apply a variety

of taxonomic constraints when reasoning and merging across taxonomies. Calculating the

merge for the Ranunculus sub-taxonomies, which contained on average 8 taxa each, took

on average 18 milliseconds, 99% of which was spent determining the transitive reduction.

Figure 6.5 shows the impact of the constraints on the merge of one of these sub-
2Note that it is also straightforward to convert source taxonomies into corresponding quotient taxonomies.
3http://www.research.att.com/sw/tools/graphviz/

6.5. Experiments and Discussion 95

A

B C D

Benson, 1948

E

G

Kartesz, 2004

F IH

KJ

[A]

[D,J]

Merge assuming no additional
constraints

[B,K] [E][C]

[G][F] [I][H]

[B,K]

[A]

[D,J][C]

[F] [H][G]

[E]

[I]

Merge with non-emptiness, sibling-
disjointness, and coverage

!!! !

!

!
!

(a) (b) (c)

Original Aligned Taxonomies

Figure 6.5: Merging Ranunculus hispidus under different assumptions. For clarity, the
disjointness relations between taxa in (c) are not shown. See text for further detail.

A

B C

1

2 3

(a)

[A,1]

B C 2 3

(b)

!

T1 T2

! ! ! !

Figure 6.6: Constraints placed on taxonomies before the merge may not apply to the result
of the merge.

taxonomies. The two sub-taxonomies for the species Ranunculus hispidis and their ar-

ticulations are shown in Figure 6.5(a). When no additional assumptions are made, the

merge results in Figure 6.5(b). It is important to recognize that in Figure 6.5(b), the lack

of an edge between two taxa represents the situation where either a transitive edge has been

removed in the transitive reduction or nothing is known about the relationship between the

taxa. Thus, in Figure 6.5(b) the relationship between taxa [C] and [E] is completely un-

known. Applying the non-emptiness constraint to all the taxa in the taxonomies results in

the additional knowledge that taxa [C] and [E] are not disjoint.

Figure 6.5(c) represents the merge when the sibling disjointness, coverage, and non-

emptiness constraints are assumed. In this merge, the taxon labeled [E] becomes a child

of [C]. For clarity, the many disjointness relations between taxa in Figure 6.5(c) are not

shown: the taxa [F], [G], [H], and [I] are mutually disjoint, the taxa [B,K], [C], and [D,J]

are mutually disjoint, and each child of [E] is disjoint from [B,K] and [D,J].

6.6. Comparison to Related Systems 96

It is important to note that when GTCs are applied to the taxonomies being merged,

they are not automatically applied to the result of the merge. For example, in Figure 6.6,

although the two taxonomies shown in (a) both exhibit the sibling disjointness constraint,

the resulting merge in (b) does not; nothing is known about the relationship between

taxa C and 2, for instance. Applying the sibling disjointness constraint to the merged

result would be adding additional information, violating the soundness desideratum. If the

articulation provider expects taxa C and 2 to be disjoint, this articulation must be added

to the alignment in Figure 6.6(a).

6.6 Comparison to Related Systems

Fundamental differences between the OntoMerge, iPrompt, Chimæra, and CleanTax ap-

proaches complicate comparisons between the systems. For example, OntoMerge does not

have an explicit merge phase to compare with the CleanTax merge. iPrompt and Chimæra

are interactive systems in which users merge ontologies by iteratively creating articulations

and performing the merge, whereas the CleanTax merge assumes a set of articulations

has been provided and performs the merge in one step. In all cases, the languages used for

representing articulations differ, and the types of reasoning applied differ. Table 6.1 details

some of these differences between the systems.

CleanTax OntoMerge Chimæra iPrompt
When Merge After articulations No real merge During articulation During articulation

Happens and reasoning
Disjunctive Relation Yes No No No

Support
Types of Reasoning Monadic FOL Forward and Extended FOL Description logic

Supported RCC backward chaining
Result of Merge Taxonomy Knowledge base Taxonomy Ontology

Support for Roles No Yes Yes Yes
and Union

Table 6.1: Comparing CleanTax to OntoMerge, Chimæra, and iPrompt .

The differences in how and when the systems apply reasoning during the merge operation

impacts the result of their merge operation. Whereas CleanTax performs a deductive

6.7. Conclusion 97

A

B C

1

2 3

(a) (b)

!

T1 T2

! !

!

[A,1]

[B,2] [C,3]
!

CLEANTAX

Merge

(c)

A/1

B/2 3
!

Others’ Merge

C
!

Figure 6.7: Comparing merges for the taxonomies in (a) under the parent-coverage con-
straint. CleanTax correctly merges taxa C and 3 (b) while the others do not (c).

closure before the merge occurs, neither iPrompt nor Chimæra appear to do so (although

they easily could). And while OntoMerge supports an extended full first-order logic, its

reasoning over that logic is quite restricted. An effect of these differences in reasoning may

be seen in the results of the merge in Figure 6.7. When the sibling disjointness, coverage and

non-emptiness GTCs are in place, CleanTax merges taxa C and 3. Chimæra, iPrompt,

and OntoMerge each leave 3 and C distinct.

6.7 Conclusion

This chapter has presented a formal approach for merging taxonomies within the Clean-

Tax system. This work is motivated by current problems in managing, integrating, and

exploiting large biological classifications including species taxonomies. As such, the chapter

has also identified a number of requirements related to merging taxonomies, and described

how the proposed merge approach satisfies them. Experimental results of an implemen-

tation of the merge approach have been provided, using a number of real-world species

taxonomies and articulations created by a domain expert. The results suggest that the

merge approach is well suited for handling large taxonomies and complex sets of articula-

tions.

98

Chapter 7

Merging Taxonomically Classified

Data

7.1 Introduction

This chapter1 addresses the problem of merging datasets when the domains of the data

attributes overlap but are not equivalent. Consider, e.g., two datasets that report ob-

servations of the presence or absence of biological taxa in a given region and at a given

time.2 Each of the dimensions, biological, spatial, and temporal, may be represented using

a taxonomy, and the datasets may each use different taxonomies for any given dimension.

In the absence of any information about the relationship between the concepts in their

taxonomies, the datasets can be naively merged by simply concatenating the observations

into a single dataset. This method, however, may result in a self-contradictory dataset, or

one that contains hidden redundancies and uncertainty. Given an alignment between two

taxonomies, the datasets can be merged in a more informed way. This chapter presents a

methodology for merging datasets that takes advantage of alignments between taxonomies
1Much of this chapter is drawn from [TBL09b] and [TBL10].
2Presence datasets such as this are very common. For example, epidemiological studies track the presence

of diseases over time and space [CHSR09]. In ecological and biodiversity research, many datasets stored
in data repositories (such as Metacat [BJBM01]) are composed of lists of biological taxa found in specified
geographic extents over given periods of time.

7.1. Introduction 99

PPR:JuneJ:Iowa

NNR:JuneL:Lee

NNR:JuneK:Ida

PPR:JuneJ:Iowa

OTimeLoc.Taxon

A: Norwegian rat

B: Roof rat

C: Pack rat

D: Allen’s wood rat

PPS:2001M:Iowa

NNS:2001M:Iowa

PPS:2001M:Iowa

OTimeLoc.Taxon

E: Common rat

F: House rat

G: Pack rat

D1 D2

Alignments

Ontologies

Attributes

Observations

Figure 7.1: Two datasets, with corresponding ontologies and ontology alignments.

while detecting contradictions, and minimizes uncertainties that may arise in the merge.

Figure 7.1 presents a simple example involving two presence datasets D1 and D2 that

describe types of rats found to be present or absent at specific places and times. The Taxon

column represents biological taxa, preceded by an abbreviation (e.g., “A” for Norwegian

rat). The taxonomies used to define and relate the taxa are represented by ontologies

depicted above the Taxon columns of the datasets. The creators of the two datasets may

have used different field guides to identify the taxa, in which case the Taxon ontologies must

be aligned to account for differences between the field guides. The Loc column represents

spatial locations: counties in Iowa in the first dataset and the State of Iowa in the second

dataset. The ontologies from which the location names are drawn are represented above

their respective columns, and an alignment relates the location names used in the datasets.

Note that Iowa is both the name of a US State and of a county in that state. Time records

when the observations are made. Finally, O records whether or not a given taxon, at a

given place and a given time, is present (P) or not present (N) (absent). The presence of a

taxon does not imply that only one instance of that taxon was seen at that place, at that

time. In addition, presence and absence are modeled as complements; a taxon cannot be

both present and absent at a given location and time.

7.1. Introduction 100

Merge Scenarios. Each dataset shown in Figure 7.1 provides a perspective on the state

of the world at a given place and time, according to a given observer. We call each dataset

a scenario. Merging the datasets should provide a more complete description of the state

of the world. However, it may not be clear how to best merge the datasets, and many

scenarios may be possible. For example, the merged dataset shown in Table 7.1(a) de-

scribes the scenario arising from a simple union of the source datasets. Although it seems

like an obvious merge, it makes many, possibly incorrect, assumptions. First, it assumes

every name is distinct from every other name. However, concepts between datasets can be

equivalent, potentially rendering the merge in Table 7.1(a) inconsistent. If concept A in D1

(Norwegian rat) is equivalent to concept F in D2 (House rat), and R in D1 is equivalent to

S in D2 (both studies were carried out in June, 2001), and concept J in D1 (Iowa County)

is a proper part of M (Iowa State) in D2, then the observations corresponding to rows 1 and

6 in Table 7.1(a) would be reporting both the presence and absence of the same taxon at

the same place and time. Table 7.1(a) further assumes that an unreported taxon does not

imply the absence of that taxon. If an unreported taxon is assumed to be absent, and, e.g.,

if Norwegian rat in D1 is disjoint from all the taxa listed in D2, it would be problematic

that D1’s observer reported the presence of at least one Norwegian rat and D2’s observer

did not.

Table 7.1(b) and (c) present two alternative scenarios. Table 7.1(b) assumes an align-

ment in which certain concepts are equivalent (e.g., A ≡ E as represented by the new taxon

AE). The alignment also asserts that certain concepts are proper parts of others. For ex-

ample, concept J is aligned as a proper part of concept M (J (M). This is represented

by introducing new location concepts: JM represents the region where J and M overlap

(J∩M), and J̄K̄L̄M represents the region of M that excludes J,K, and L (M \(J∪K∪L)).

Sources of Uncertainty. Uncertainty induces multiple possible merges. For example,

the different merges in Table 7.1 occur because of uncertainty in the alignment between

ontologies: the concepts A and E might be distinct concepts, as in Table 7.1(a), or equiva-

7.1. Introduction 101

Taxon Loc. Time O

A J R P

B K R N

C J R P

D L R N

E M S P

F M S N

G M S P

(a)

Taxon Loc. Time O

AE JM RS P

AE J̄K̄L̄M RS P

BF KM RS N

BF J̄K̄L̄M RS N

CG JM RS P

CG J̄K̄L̄M RS N

D LM RS N

D J̄K̄L̄M RS N

(b)

Taxon Loc. Time O

AE JKLM RS P

BF JKLM RS N

CG JKLM RS P

D JKLM RS N

(c)

Table 7.1: Three possible merges of the datasets in Figure 7.1.

lent concepts, as in Table 7.1(b). This uncertainty may have been explicitly stated by the

ontology aligner (A ≡ E or A ! E), or it may have been inferred from an incomplete align-

ment. This kind of uncertainty is called disjunctive relation uncertainty (DRU) because it

involves a disjunction of relations (equivalent or disjoint, in this case). Disjunctive relations

may also exist within individual ontologies. For example, the traditional interpretation of

“isa” as “equals or is included in” [Bra83] is a disjunctive relation.

Even when the relationship between two concepts is certain, the relationship may lead

to uncertainty. For example, if an alignment holds that concept A according to D1 is a

kind (i.e., proper subset) of concept E according to D2 (A (E), it is unclear whether or

not any of the E’s reported in dataset 2 are also A’s. There are two possibilities: either all

the observed rats are both A’s and E’s (AE), or some of the rats are E’s but not A’s (ĀE).

This source of uncertainty is called basic relation uncertainty (BRU) because it arises from

basic set relations. Whereas disjunctive relation uncertainty exists at the ontology level,

basic relation (B5) uncertainty occurs at the level of the observations in the datasets. To

reliably resolve this uncertainty, one would have to ask for clarification from the dataset’s

7.2. Basic Approach 102

observer.

The goal is to create dataset merges free of BRU and DRU. While BRU and DRU may

appear in source datasets, in general high quality datasets do not contain these types of

uncertainty and many “best practices” guides for data collection [Cha05] specifically rec-

ommend avoiding these types of uncertainty. This chapter provides algorithms for merging

datasets that are free of BRU and DRU, as well as those that are not. However, the algo-

rithm for merging datasets that do not contain BRU or DRU is considerably more efficient

than the one for merging datasets that already contain uncertainty.

Contributions and Road Map. This chapter contributes a novel modeling framework

for merging datasets with aligned domains under uncertainty. It describes several sources

of uncertainty within data sets as well as arising from the merging of datasets, and presents

a possible worlds semantics for managing this uncertainty. Finally, the chapter provides

algorithms for merging datasets in this context, providing NEXP-time algorithms for the

general case of generating possible worlds, and an NP-time SAT-based solution for the

common case of merging source datasets that do not contain BRU and DRU.

7.2 Basic Approach

This section provides an informal description of the elements involved in dataset merging,

and a high-level description of the approach. Datasets are defined as relations over finite sets

of attributes. Data items within a data set are tuples of values, where the values are drawn

from their respective attribute domains. The values represent concepts (classes), which are

sets of instances. For example, taxa are sets of (perhaps unknown) biological specimens,

locations are sets of points in space, and times are sets of moments. The attribute domains

may be structured, containing the domain concepts and relations between them stated

in some language (e.g., first-order logic, monadic logic, or Description Logic). They are

called ontologies and a dataset’s collection of ontologies is called its metadata. Internally

7.2. Basic Approach 103

P

OTaxon

P

OTaxon

A B

!

D
1 D

2

A B

(a)

World AB AB̄ ĀB ĀB̄

1 1 1 1 1

2 1 1 1 0

3 1 1 0 1

...
...

...
...

...

16 0 0 0 0

(b)

World AB ĀB

1 1 1

2 1 0

(c)

Taxon O

AB P

ĀB P

(d)

Taxon O

AB P

ĀB N

(e)

Figure 7.2: (a) A very simple scenario, (b) its initial world set, (c) the reduced possible
world set, (d) and (e) the corresponding merged datasets.

consistent source datasets are assumed. Inconsistency, however, can occur in a number of

places. A dataset may contain contradictory information if, e.g., it states both the absence

and presence of a taxon at a given place and time. A dataset may also be inconsistent

with its metadata, e.g., if the metadata states that taxa A and B are equivalent (represent

equivalent sets), but the data say that A is present at a given place and time and B is

absent. Finally, the ontologies in the metadata may be inconsistent. A legal dataset is one

that does not violate any of these consistency constraints. An unambiguous dataset is a

legal dataset that contains neither basic nor disjunctive relation uncertainty.

Each scenario in Table 7.1 describes one unambiguous dataset. Each possible merged

dataset is one of many possible worlds [LL59, AKG87] in a possible worlds set (PWS).

Given two datasets, one could generate the appropriate PWS by generating an initial world

set (IWS) containing every conceivable world (restricted by the finite domains of the meta-

data), including those worlds that violate the alignment and certainty constraints, and then

reducing this set by eliminating columns and rows that violate the constraints.

Unfortunately, this approach is intractable. Consider the extremely simple scenario

shown in Figure 7.2(a) having two datasets D1 and D2 with taxon A present in D1, and B

present in D2. Each dataset has a single biological attribute, and that attribute can only

take one value: A for D1 and B for D2, and an articulation between these concepts states

7.2. Basic Approach 104

that A (B. To generate an IWS, first determine all conceivable conditions that may or may

not hold based on the concepts in the dataset ontologies. There are four ways to combine the

biological concepts A and B: a biological specimen might be an example of AB,AB̄, ĀB,

or ĀB̄. Each of these combinations is called a combined concept. Each combined concept

represents a set of instances, and a dataset reports whether there are no instances of the set

present within the context of the dataset (absence), or at least one instance from the set

present (presence). The resulting IWS has 22 = 4 combined concepts and 24 = 16 worlds.

This IWS can be conveniently represented with a world set relation [AJKO08] as shown

in Figure 7.2(b). In this table, the conditions are represented as columns, and each world

is a row. The number 1 indicates that instances of the combined concept are present in a

given possible world, and 0 represents the absence of instances of that combined concept.

The first world represents the (impossible) situation in which instances of all the combined

concepts are present. This is impossible because the first combined concept AB̄ cannot be

present (in fact, is not satisfiable) because A (B.

Once the IWS table is created, it may be reduced by removing combined concepts

and possible worlds that violate constraints or are unsupported by the input datasets.

For example, because A (B, AB̄ is an impossible combined concept, any possible world

involving it should be removed. Similarly, because D1 reported the presence of A, and

A (B, AB must be 1 in every possible world, and any world with 0 in that column

should be removed. In addition, combined concepts for which there is no evidence should

be removed. In this example, the last combined concept of the IWS should be removed

because neither dataset describes specimens that are neither A nor B. Finally redundant

rows created by the deletion of combined contexts should be removed. Removing all of

the impossible, redundant, and unsupported information results in the two possible worlds

in the PWS shown in Figure 7.2(c). The two merged datasets that correspond to these

possible worlds are shown in Figures 7.2(d) and 7.2(e).

In more typical situations, this approach will not work. For example, merging two

datasets with three attributes, where each attribute has a corresponding ontology (O1, O2,

7.3. Framework 105

and O3) with |On| concepts will result in a IWS with C = 2|O1|+|O2|+|O3| columns, and

2C rows. The simple scenario in Figure 7.1 would lead to an IWS with 27+4+2 = 8192

combined concepts and 28192 worlds; a number of worlds too large to enumerate, much less

manipulate. A primary contribution of this work is a set of more tractable algorithms for

generating the appropriate PWS.

7.3 Framework

Dimensions, Concepts, and Ontologies. Distinct types of objects are organized using

classification dimensions (or dimensions for short). This chapter is primarily concerned

with three dimensions: spatial (e.g., locations and regions), temporal (e.g., points in time

and intervals), and biological (e.g., organisms classified via biological taxonomies). Vocab-

ularies for classifying objects are represented using ontologies O = ({C1, ..., Cn},Σ) each

consisting of a finite set of concepts and a set of constraints Σ on those concepts. Each

concept C specifies a set of objects that are considered to be instances of C. Each ontology

O is associated with a dimension given by a function dim(O). Thus, each concept of a

particular ontology classifies objects of the same dimension.3 Biological ontology concepts

describe sets of organisms, spatial ontology concepts describe sets of points in space, and

temporal ontology concepts represent sets of moments in time.

Data Sets and Observations. Datasets are represented as relations D over the schema

C1 × · · · ×Cn ×D1 × · · · ×Dm

where each Ci denotes a context attribute and each Dj denotes a data attribute. A total

function, m : C → O, maps each context attribute to an associated ontology, and the

domain of the attribute is restricted to the concepts in the associated ontology. A data
3An ontology typically contains terms from different dimensions and can be viewed in our framework as

consisting of one or more domains.

7.3. Framework 106

attribute represents a set of possible values corresponding to observations made over the

given context attributes. The example describes the following special case

CB × CS × CT × DO

where CB represents a required biological context attribute (e.g., organisms classified via

biological taxonomies), CS represents an optional spatial context attribute, CT represents

an optional temporal context attribute, and DO represents a simple data attribute denoting

a presence or absence observation over context attributes. In general, presence datasets are

represented by one or more records of the form D(b, s, t, o) where b ∈ CB, s ∈ CS, and

t ∈ CT are concepts, and o ∈ DO is either P, meaning at least one b was observed in

region s during time t, or N, meaning no instances of b were found in region s during time

t. Each record in a dataset is an observation. Although biodiversity datasets often contain

additional context information and measurements [BMS08], the features described above

are sufficient to demonstrate the core issues of dataset merging addressed here.

Absence Closure. The datasets described so far contained presence and absence infor-

mation explicitly. In some cases, a dataset may contain only presence information, but

intend that absence is implied when an observation is not made. A presence dataset is

closed under absence if for each context term bi ∈ CB, sj ∈ CS, and tk ∈ CT there is a

record D(bi, sj , tk, o). If no such record exists in the dataset, the dataset may be closed by

asserting an absence observation via the record R(bi, sj , tk, N).

Relationships Between Ontologies. This work describes merging two datasets of the

aforementioned schema. Although the schemas are the same, the ontologies for the biologi-

cal, spatial, and temporal context attributes may differ between datasets. Concepts within

and across ontologies of the same dimension are related through sets of (first-order) con-

straints Σ. Given an ontology O, ΣO denotes the constraints of O. As usual, constraints

between concepts of different ontologies are called articulations, and a set of ontologies with

7.3. Framework 107

articulations between them is called an alignment. This work only considers articulations

between concepts that appear in ontologies of the same dimension, dim(A.1) = dim(A.2).

A set of alignments, A = {A1, · · · , An} where ∀x, y ∈ A : x 6= y → dim(x.1) 6= dim(y.1), is

called an alignment set.

Merging Ontologies. Merging the context ontologies described here is a straightforward

generalization of the merge in Chapter 6 which described a method for merging taxonomies

under RCC-5 articulations. Given two ontologies O1 and O2 and an alignment ΣO1O2

describing the RCC-5 articulations between the concepts in O1 and O2, the merge algorithm

begins by converting the ontologies to axioms in a first-order language (ΦO1 ,ΦO2 , and

ΦO1,O2) and using a reasoner to calculate the RCC-5 closure of the union

ΦM = ΦO1 ∪ ΦO2 ∪ ΦO1,O2

of the logic axioms describing the source ontologies and the articulations.

A merged ontology is then created by defining, if necessary, a new concept for each

class of equivalent concepts, and rewriting the articulations determined by the RCC-5

closure with the new concept terms. CM represents the set of predicate names in ΦM . An

equivalence relation on CM is defined such that:

a ∼ b if Φ |= ∀x.a(x)↔ b(x),

where the equivalence class of a ∈ C is [a] = {x ∈ C | x ∼ a}. Ontology O has synonyms

if for some a, b ∈ C with a 6= b, a ∼ b; otherwise O is called synonym-free. Using this

definition we can construct a unique, synonym-free version of the initial merged ontology.

This simplified version is called a quotient ontology O/∼ such that:

C/∼ = {[a] | a ∈ C},

Φ/∼ = {[ϕ] | ϕ ∈ Φ}.

7.3. Framework 108

Here for every FO formula ϕ, define its quotient [ϕ] to be the formula where each atom

a(x) has been replaced by the atom [a](x).

Data Set Merge Result and World Sets. The result of merging two datasets M =

Merge(D1, D2,A) is often a set of possible worlds. Each world represents an unambiguous

dataset that has as its metadata the merge of the source datasets’ ontologies, and fur-

thermore respects the observations in the source datasets. One dataset D1 respects the

observations of another D2 (D1 ≺ D2) if D1 |= D2. For example, a dataset derived from a

possible world DM respects the observations of one of its sources DS if for every tuple t in

DS , DM |= t.

The main challenge addressed in this chapter is (efficiently) determining the possible

worlds. Once they have been found, the worlds can be conveniently represented using

a single relation W [AKO07]. Start with a set of possible worlds P , where each world

p ∈ P is an instance of a relation following the D(b,s,t,o) schema, where |p| is the number

of tuples in p. For each tuple in each possible world, apply a function f() to create a

symbol representing the concatenation of the context attributes. For example, for the tuple

D(b1, s1, t1, P), create a symbol b1s1t1. T is the set of such symbols. The attributes of the

schema of W are the symbols in T , and its arity is |T |. Each attribute in W is indexed

with values 1 ≤ i ≤ |T |.
The tuples in W are created as follows: For a given world p ∈ P with tuples {t1,, tn},

let tp be a tuple following the schema of W where for 1 ≤ i ≤ |T |, tp(Wi) = 1 if ∃x ∈ p such

that f(x) = Wi and o(x) = P; tp(Wi) = 0 if ∃x ∈ p such that f(x) = Wi; and o(x) = N and

p(Wi) = ⊥ otherwise.

Translation into Logic. To determine whether or not two datasets may be merged,

to ensure the consistency of datasets, and to validate the result of the merge requires

reasoning about the datasets, their ontologies, and the relationships between the ontologies.

To provide this reasoning, we translate each of these elements into sets of first-order logic

7.3. Framework 109

≡: ∀x : A(x)↔ B(x). !: ∀x : A(x)→ ¬B(x).
(: ∀x : A(x)→ B(x). ⊕: ∃x : A(x)→ ((A(x) ∧B(x)) | (A(x) ∧ ¬B(x))).
): ∀x : B(x)→ A(x). ∃x : B(x)→ ((A(x) ∧B(x)) | (¬A(x) ∧B(x))).

Table 7.2: A monadic logic encoding of articulations of the form A ◦B where ◦ ∈ {≡,(,)
,⊕, !}. This encoding applies when translating datasets into logic. When translating on-
tologies and articulations into logic for the purpose of checking their consistency or merging
the ontologies, use the encoding in Chapter 4.

formulas.

Each record of a dataset D induces a first-order logic formula as follows: A presence

observation denoted by a record of the form D(b, s, t, P) is represented by a formula

(∃xyz) b(x) ∧ s(y) ∧ t(z) ∧ present(x, y, z)

where the relation present(x, y, z) holds whenever the biological entity x was present at

location y and time z.4 The formula above states that a biological organism x of type b

was observed within location y of type s and at time z of type t. Similarly, an absence

observation denoted by a record D(b, s, t, N) is represented by a formula

(∀xyz) b(x) ∧ s(y) ∧ t(z)→ ¬present(x, y, z)

stating that for each biological entity x of type b, location y of type s, and time z of type

t, x was not found within location y at time z. Note that this encoding of absence asserts

the complete absence of entities of the given biological type throughout the given spatial

and temporal contexts. The set of axioms reflecting the observations of a dataset is called

ΦDI .

The constraints over the concepts in the ontologies are encoded using monadic logic.

More specifically, the ontology constraints in ΣO are restricted to relations from the RCC-

5 algebra, plus an additional type of constraint called coverage. The coverage constraint

states that one concept can be defined as the union of a set of concepts (e.g., (∀x) P (x)↔
4Where the formula includes the S and T terms only if these are part of the presence-absence schema.

7.3. Framework 110

C1(x)∨· · ·∨Cn(x).) We define ΦO as the combined set of formulas generated by translating

the RCC-5 constraints in ΣO into monadic logic using the rules in Table 7.2, plus additional

coverage constraints. The RCC-5 based articulations between ontology concepts are also

represented as monadic logic formulas ΦA.

A complete dataset, then, is defined as

ΦDS = ΦDI ∪ ΦO1 ∪ · · · ∪ ΦOn

where n ranges over the ontologies referenced by the dataset.

Merge-Compatible Data Sets. To determine whether or not two datasets may be

merged, calculate the absence closure for each dataset, if required, and then translate the

datasets into the first-order logic representation above, along with their ontologies and the

alignment axioms relating the ontologies. Then apply a first-order reasoner to determine

whether or not the combined axioms are consistent. The merge of two datasets ΦM is the

union of the formulas for each dataset combined with the formulas derived from the RCC-5

articulations between the dataset ontologies

ΦM = ΦDS1 ∪ ΦDS2 ∪ ΦA1 ∪ · · · ∪ ΦAn

where n ranges over the context attributes in the datasets.

Example (Merge-Compatible). Consider Fig. 7.1 without absence closure, and ontol-

ogy alignment set A = {{A ≡ E;B ≡ F ;C ≡ G}, {J ≡M ;K ≡M ;L ≡M}, {R ≡ S}}. In

this simple example, merging the two datasets is straightforward, where the single merge

result shown in Table 7.1(c) contains no BRU or DRU and represents all the observed data.

Typically, however, merging two datasets does not result in a combined dataset that is free

of uncertainty, due to non-trivial ontologies and articulation constraints. The following

section describes an approach for merging datasets when the merge cannot be satisfied by

7.4. Merging Data Sets 111

a single dataset, and instead must be represented as a set of possible merges.

7.4 Merging Data Sets

Merging two datasets results in a set of possible merges, each representing an unambigu-

ous dataset that respects the observations in the source datasets. Before carrying out the

merge, determine the input datasets’ merge compatibility. If the sets are merge compatible,

perform one of two types of merge. Basic relation merges (BRM) are those in which all

the relations between concepts in the two datasets are drawn from the basic set relations.

Disjunctive relation merges (DRM) are those that involve at least one disjunctive relation

(e.g., A{≡(}B). This section proceeds by first describing how to check for merge com-

patibility, followed by a description of a naive algorithm for merging datasets. The section

ends with two BRM algorithms and a description of how to perform a DRM.

7.4.1 Merge Compatibility and Absence Closure

For two datasets to be merge compatible, they must follow the given schema, their ontologies

must be consistent, the data must be consistent with the ontologies, the alignments between

their ontologies must be consistent, and finally, the union of the logic axioms for each

dataset, their ontologies, and the ontology alignments must be consistent. These steps are

outlined in Algorithm 1.

Consistency in the last step may be violated by contradictions introduced by explicit

absence statements, as well as axioms introduced in absence closure. For example, in

Fig. 7.1, if D ≡ X where X is some known, but unreported rodent in dataset 2’s taxonomy,

absence closure leads to a direct contradiction; dataset 2 would state explicitly that X is

absent, conflicting with the observed D in dataset 1. Algorithm 2 provides a straightforward

way of calculating these absence axioms. This algorithm first determines all possible cases

in which presence might be observed within the given attribute contexts, and then rules

out those cases that are implied by known observations, and also those that imply known

7.4. Merging Data Sets 112

Algorithm 1: Merge Compatible
Input : Two datasets and a set of articulations between the ontologies
Output : true if the datasets are merge compatible, false otherwise

1. Determine consistency.

(a) For each dataset

i. Calculate ΦO for each ontology and check its consistency.
ii. Calculate ΦDS for the dataset and check its consistency.

2. If each dataset is consistent, check the alignment ΦO1 ∪ΦO2 ∪ΦA12 between each pair
of dataset ontologies for consistency.

3. If each alignment is consistent, check the full merge ΦM for consistency, applying
absence closure if required.

Algorithm 2: Calculate Absence Closure Axioms
Input: A dataset
Output: A set of logic axioms representing absence axioms

1. Create logic absence axioms A = {a1, · · · an} for each possible combination of context
attribute values B × S × T

2. For each row in the dataset ri, for each created absence axiom ai:

(a) if ri → ai remove ai from A

(b) if ai → ri remove ai from A

3. Return A

observations.

7.4.2 The Naive Basic Relation Merge Algorithm

The most straightforward way to calculate the possible worlds is to create an initial world

set (IWS) as described in Section 7.6.2, encode each world in logic, and test whether or

not it is consistent with the formulas in ΦM . This method, however, is both intractable

and inefficient. A somewhat more efficient approach is to initially rule out impossible

conditions in the IWS. For example, if an articulation holds that A (B, any world in

which the combined concept AB̄ is either present or absent would be inconsistent with the

articulation. Removing conditions containing such concepts reduces the size of the IWS and,

7.4. Merging Data Sets 113

as will be shown in Section 7.5, can generate possible worlds for small datasets. Table 7.3

lists the monadic logic formulas generated to test the possible world in Fig. 7.2(d) in which

instances of taxa that are both A and B are present, as well as instances of taxa that are

B but not A. The complexity of naive BRM algorithm comes primarily from the need to

perform many (up to 2n) monadic logic proofs, each of which is NEXPTIME [BGW93].

Axioms: Conjecture:
∀x : A(x)→ B(x). ∃x : AB(x). (∀x : (A(x)→ B(x)))∧
∀x : B(x)↔ (AB(x) ∨ ĀB(x)). ∃x : ĀB(x). (∃x : A(x)) ∧ (∃x : B(x)).
∀x : A(x)↔ AB(x). ¬∃x : ĀB̄(x).
∀x : A(x) ∨B(x). ∀x : ĀB(x)→ (¬A(x) ∧B(x)).
∀x : AB(x)→ (A(x) ∧B(x)). ∀x : ĀB̄(x)→ (¬A(x) ∧ ¬B(x)).

Table 7.3: Monadic logic rules demonstrating the possibility of the dataset in Fig. 7.2(d).

7.4.3 General Basic Relation Merge (BRM-G)

The general basic relation merge (BRM-G) presented in Algorithm 3 applies when the

datasets to be merged have no DRM, but may have BRM. The key steps to the BRM-G

algorithm are calculating the columns of the PWS H, and the propositional formula Φ,

the models of which represent the possible worlds in the PWS. The compress function in

step 2(c)ii takes two combined concepts, both of length n. If the two combined concepts

agree on n − 1 concepts, the result is the concepts they agree on, plus the concepts they

disagree on. For example, compress(AB̄C̄, B̄C̄D) results in AB̄C̄D. The compress function

also makes sure to not create any impossible combined concepts, such as ones that contain

a term and its negation (e.g., AĀ).

Example (Only one context domain). Consider a simplified version of Fig. 7.1 with

only the biological attribute context, the observation data context, and the following align-

ment between the biological ontologies of the datasets: A = {A ≡ E;B ≡ F ;C⊕G;D (G}.
A straightforward union of the biological concepts in this situation shown in Table 7.4(a)

contains several problems. First, listing both A and E is redundant, as A ≡ E. More

importantly, D and G have a (relation between them, so the result in Table 7.4(a) still

7.4. Merging Data Sets 114

Algorithm 3: General Basic Relation Merge (BRM-G)
Input : A naively merged dataset.
Output : A possible world set representing each possible merge.

1. Create a new concept c1c2 · · · cn for those concepts that are equivalent according to
the articulations. Replace all concepts contributing to the new concept with the new
concept in ΦM . Remove redundant formulas.

2. For each attribute A ∈ {B,S, T}:
(a) Create an empty set PA.

(b) For each pair of rows (ri, rj) in the dataset

i. Let ci = A(ri) and cj = A(rj)
ii. If ci (cj , add cicj and c̄icj to PA.
iii. if A(ci)⊕A(cj), add cicj , cic̄j , c̄icj to PA.
iv. if A(ci) !A(cj), add cic̄j and c̄icj to PA.

(c) Repeat |A| − 2 times, where |A| is the number of concepts of attribute A in the
datasets.

i. Create empty set EA
ii. For each pair of concepts ci, cj , i 6= j ∈ PA, add compress(ci, cj) to EA
iii. set PA = EA

3. For each dataset row r, for each attribute A ∈ {B,S, T}, for each term p ∈ PA, if
A(r) appears positively in p then add p to VA(r).

4. Create a propositional logic statement that will generate the possible worlds: Create
empty sets A and H. For each observation r in each dataset:

(a) For each attribute A ∈ {B,S, T} : DA =
∨
VA(r)

(b) C =
∨
DB ×DS ×DT

(c) If O(r) = P, add C to A

(d) If O(r) = N add the negation of C to A

(e) Add C to H

5. Conjoin the elements in set A – this will be a propositional logic statement – the
possible worlds are the models of this statement.

(a) H contains the conditions in the header of the table

(b) Create the rows: For each model, add a new row to the table where for each
condition in H, if the condition holds in the model, put 1 in the appropriate
column, and add 0 otherwise.

7.4. Merging Data Sets 115

H = {AE,BF,CḠ, CG, C̄D̄G,DG}
Φ = AE ∧ ¬BF ∧ (CḠ ∨ CG) ∧ (C̄D̄G ∨ CG ∨DG) ∧ ¬DG

Taxon O

A P

B N

CG P

D N

E P

F N

(a)

World AE BF CḠ CG C̄D̄G DG

1 1 0 1 1 1 0

2 1 0 1 0 1 0

3 1 0 1 1 0 0

4 1 0 0 1 1 0

5 1 0 0 1 0 0

(b)

Taxon O

AE P

BF N

CḠ P

CG N

C̄D̄G P

DG N

(c)

Taxon O

AE P

BF N

CḠ N

CG P

C̄D̄G N

DG N

(d)

Table 7.4: Possible worlds for Fig. 7.1 with just its biological attribute context and its
data context. (a) shows a merge representing the (ambiguous) straightforward union of
the datasets, (b) shows the PWS of unambiguous worlds. Tables (c) and (d) represent
unambiguous merged datasets derived from the PWS.

contains BRU. Finally, although C and G are both named pack rat, they are not equivalent

terms as represented in Table 7.4(a).

Running the BRM-G against this example results in the H and Φ shown at the top of

Table 7.4.5 The PWS that results from these formulas is shown in Table 7.4(b). The enu-

meration of all possible worlds shown in Table 7.4(b) indicates that the combined concept

AE is present in all possible worlds (certainly present), while BF and DG are absent in all

possible worlds (certainly absent). The situation is more complicated for concepts C and

G. Table 7.4(c) and (d) give two of the possible merged datasets showing different possible

configurations of C and G .
5To save space and improve legibility, the complete combined concepts are not given in the table. For each

abbreviated concept in Table 7.4, the full combined concept can be determined by adding the negated form
of all the concepts in the datasets not mentioned in the combined concept. For example, the abbreviated
combined concept AE in Table 7.4 stands for AB̄C̄D̄EF̄ Ḡ.

7.4. Merging Data Sets 116

Example (Two context domains). Consider the taxonomic and spatial dimensions of
the running example with the alignment A = {{A ≡ E;B ≡ F ;C ⊕ G;D (G}, {J (
M ;K (M ;L (M}}. Below are the columns of the PWS (each given a number), followed
by the propositional formula describing the possible worlds.

H = {1 : AEJM, 2 : BFKM, 3 : CGJM, 4 : CḠJM, 5 : DGCM, 6 : AEKM, 7 : AELM, 8 : AEJ̄K̄L̄M,

9 : BFJM, 10 : BFKM, 11 : BFLM, 12 : BFJ̄K̄L̄M, 13 : CGKM, 14 : CGLM, 15 : CGJ̄K̄L̄M

16 : C̄D̄GJM, 17 : C̄D̄GKM, 18 : C̄D̄GLM, 19 : C̄D̄GJ̄K̄L̄M, 20 : DGJM, 21 : DGKM, 22 : DGJ̄K̄L̄M}

Φ = 1 ∧ ¬2 ∧ (3 ∨ 4) ∧ ¬5 ∧ (1 ∨ 6 ∨ 7 ∨ 8) ∧ ¬(9 ∨ 10 ∨ 11 ∨ 12) ∧

(3 ∨ 13 ∨ 14 ∨ 15 ∨ 16 ∨ 17 ∨ 18 ∨ 19 ∨ 20 ∨ 21 ∨ 5 ∨ 22)

Φ has 24576 (< 215) models, each of which is a possible merged dataset. This may

seem like a large number, but it is considerably smaller than the number of possible worlds

in the initial world set (22(7+5)
= 24096). The BRM-G is considerably more efficient than

the naive algorithm because it involves a single NP-complete SAT proof, rather than up to

2n NEXPTIME monadic logic proofs. The algorithm itself, however is O(2n) due to the

need to run the compress function multiple times. Each time compress is run, the size of

P changes, and in the worst case, when all the concepts overlap, |P | = 2n the final time

compress is run.

7.4.4 The Basic Relation Merge for Unambiguous Data Sets (BRM-U)

The BRM-G algorithm works when source datasets contain BRU. The BRM-U algorithm

presented here is far more efficient, but only works when the source datasets have no BRU

(or DRU). The only difference between the BRM-G and BRM-U algorithms is in how the

compress function creates combined concepts. In the BRM-G algorithm, compress is run

n− 2 times where n is the number of distinct concepts in the source datasets and the input

can be as large as 2n combined concepts. In the BRM-U algorithm, on the other hand,

7.4. Merging Data Sets 117

compress is only run once on
(
n
2

)
combined concepts. This is possible because when a

dataset has no BRU, and the equivalent concepts have been combined into a single concept

(step 1 in Algorithm 3), any combined concept can contain at most one pair of non-negated

concepts (one concept from each dataset). After a single run of compress, each combined

concept in PA will be three concepts long, and all the feasible pairs of non-negated concepts

will have been found. After this single run of compress, each combined concept is then

padded with the negated version of all the n−3 concepts that are not yet in that combined

concept. The resulting compress algorithm is O(n2) as it involves a single pass through
(
n
2

)
combined concepts determined in step 2b of Algorithm 3. The entire BRM-U algorithm is

O(n2) except for the single SAT proof at the end, which is NP-complete.

7.4.5 Merging under Disjunctive Relation Uncertainty

The algorithm described here applies to merges involving both BRU and DRU. The strat-

egy is to divide alignments containing disjunctions into several alignments containing no

disjunctions, determine the PWS for each BRM situation, and combine the results. Divid-

ing disjunction containing alignments into several basic alignments is an expensive process.

Consider, e.g., the taxonomy alignment in Fig. 7.3, which contains two disjunctive rela-

tionships {A {≡,(} E ; B e.g. F} and represents “isa” relations as (. To decompose this

disjunction-containing alignment into alignments containing only basic relations, one might

try simply multiplying out the disjunctive relationships, creating four possible alignments.

If, however, the following additional constraints hold in the alignment: X ≡ A∨B∨C ∨D;

Y ≡ E ∨ F ∨ G, and sibling concepts are disjoint, two of the four possible alignments

({A (E;B ≡ F} and {A ≡ E;B) F}) are ruled out.

With this in mind, the disjunction containing alignment above can be divided into two

consistent alignments containing only basic relations: one equivalent to the one described in

Section 7.4.3, and the other following the alignment: A = {A (E;B) F ;C ⊕G;D (G}.
Table 7.5(a) shows the complete PWS for the disjunction containing alignment. The column

to the side of the table records which alignment applies to the given row: alignment 1 is

7.5. Evaluation 118

X

A B

T1

Y

E F

T2

!

{!"!}

{!""}

C D G

#
"

Figure 7.3: When sibling concepts are disjoint and parents contain no instances not found
in their children, this disjunctive relation containing alignment has two basic relation in-
terpretations.

where A ≡ E and B ≡ F , and alignment 2 is where A (E and B) F . This additional

information may be considered provenance; the actual metadata for the merged datasets

is still the merged ontologies of the original datasets. The ⊥ seen in worlds 1 through 5

indicates that the combined concept does not exist in that world.

Table 7.5 contains some subtly different merges. For example, in merge 15 (shown in

Table 7.5(c)), no instances of ĀE were seen, while in merge 5 (shown in Table 7.5(b)) there

is no such thing as an instance of ĀE.

7.5 Evaluation

This section evaluates the efficiency of the basic relation merge, which is the core of our

dataset merging methodology. The naive, BRM-G, and BRM-U dataset merge algorithms

are compared here using two types of datasets: those containing no BRU or DRU (the

unambiguous inputs condition), and those that contained BRU (the ambiguous inputs con-

dition).

Pairs of datasets and the alignments between their concepts were generated randomly.

7.5. Evaluation 119

World AE BF ĀE BF̄ CḠ CG C̄D̄G DG

1 1 0 ⊥ ⊥ 1 1 1 0

2 1 0 ⊥ ⊥ 1 0 1 0

3 1 0 ⊥ ⊥ 1 1 0 0

4 1 0 ⊥ ⊥ 0 1 1 0

5 1 0 ⊥ ⊥ 0 1 0 0

6 1 0 1 0 1 1 1 0

7 1 0 1 0 1 0 1 0

8 1 0 1 0 1 1 0 0

9 1 0 1 0 0 1 1 0

10 1 0 1 0 0 1 0 0

11 1 0 0 0 1 1 1 0

12 1 0 0 0 1 0 1 0

13 1 0 0 0 1 1 0 0

14 1 0 0 0 0 1 1 0

15 1 0 0 0 0 1 0 0

P

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

(a)

Taxon O

AE P

BF N

CḠ N

CG P

C̄G N

DG N

(b)

Taxon O

AE P

BF N

ĀE N

BF̄ N

CḠ N

CG P

C̄G N

DG N

(c)

Table 7.5: PWS for Section 7.4.5(a) and two datasets derived from the PWS: world 5 in
(b) and world 15 in (c).

Each dataset had only one context attribute, and each observation of the datasets was

recorded as present. Generating interesting large consistent alignments between dataset

concepts proved challenging. While it is simple to generate large alignments in which all

the relations are of one type (e.g., all equivalent, all overlapping, all disjoint), generating

consistent alignments that mix relations is computationally expensive. To address this

issue, alignments of up to 9 concepts in which the non-disjoint relationships were either

all-⊕, all-(, or had mixed relations, including ≡, ⊕, (, and) were generated. The same

patterns of results held in the all-⊕, all-(, and mixed conditions, so for datasets of fewer

than 10 concepts, the average results of these three types of datasets are reported. Results

7.5. Evaluation 120

Data Items 3 4 5 6 7 8 9
naive 8.83 23.57 32.49 > 60 > 60 > 60 > 60

BRM-G 0.03 0.04 0.08 0.34 1.86 16.88 23.91

(a) Ambiguous Inputs

Data Items 3 4 5 6 7 8 9
naive 1.73 6.46 18.09 > 60 > 60 > 60 > 60

BRM-G 0.03 0.04 0.05 0.11 0.37 2.06 7.24
BRM-U 0.03 0.04 0.04 0.05 0.05 0.06 0.06

(b) Unambiguous Inputs

Data Items 25 50 75 100 200 300 400 500
BRM-U 0.19 0.37 0.86 2.32 24.54 121.25 359.24 824.92

(c) BRM-U with larger unambiguous input datasets

Data Items 3 4 5 6 7 8 9
Ambiguous Inputs 22 12 26 81 266 173 180
Unambiguous Inputs 2 3 7 86 58 165 224

(d) Worlds generated by mixed relation datasets

Table 7.6: Average run times in seconds for the naive algorithm and two versions of the
BRM algorithm using datasets of between 3 and 9 concepts in two conditions: (a) where
the dataset contains basic relation uncertainty, and (b) where the input datasets do not
contain basic relation uncertainty. Run times in seconds for larger datasets using the BRM-
U algorithm are shown in (c). The average number of worlds generated by datasets with
mixed relations is shown in (d).

of 10 or more concepts are the average of the all-⊕ and all-(conditions. Each condition

was run three times, and only marginal variance was found between runs.

The naive algorithm runs employed the first-order reasoner iProver 0.7 [Kor08] to test

whether a given world qualifies as a possible merge. Comparisons between iProver and

several other available first-order reasoners showed iProver to be the fastest to solve our

class of problem. The BRM algorithm tests employed the c2d [Dar04] reasoner to check

the satisfiability of the propositional statement that determines the possible merges, and to

generate and count models of the statement. c2d has the advantage of providing polynomial-

time model counting.

As may be seen in Table 7.6, the naive implementation performs poorly, taking over a

minute to generate possible worlds for datasets with more than 6 concepts. In the ambiguous

input condition, the BRM-G algorithm performs considerably better. However, the time

7.6. Towards a Best-Effort Merge of Taxonomically Organized Data 121

to generate the possible worlds still grows exponentially with the size of the input. The

unambiguous inputs condition shows the same pattern for the naive and general BRM

algorithms. However, the BRM-U algorithm performs comparatively well, providing both

a feasible and efficient method for generating the possible dataset merges. Table 7.6(c)

shows how the BRM-U algorithm scales to up to 500 concepts. The presence datasets

found in MetaCat [BJBM01] have listed fewer than 300 concepts, and the largest pair of

articulated biological taxonomies we have seen to date [Pee05] has comprised 360 concepts,

so the algorithm scales well to the currently available real-world data. Table 7.6(d) gives

the average number of worlds generated by the datasets with mixed relations.

7.6 Towards a Best-Effort Merge of Taxonomically Orga-

nized Data

As discussed, it may not be possible to derive a single merged dataset that adheres to the

specificity constraint, and so it may be necessary to provide multiple possible data merges

that adhere to the constraint. If, however, a user desires only one merged dataset, we will

need to provide a best-effort merge which is as specific as possible.

This section investigates the applicability of the data exchange setting to the problem

of determining a single best-effort merge.

7.6.1 Introduction

In data exchange, a source schema S and a target schema T are given, together with source-

to-target dependencies Σst and target schema constraints Σt. Given an input instance I of

S, a solution to the data exchange problem is a target instance J of T, such that 〈I, J〉
satisfies Σst and J satisfies Σt. In general, there are multiple solutions, so the certain

answers, i.e., contained in all possible solutions J , are usually reported. Data exchange has

been well studied in recent years [FKP03, FKPT07, AL08] and tractable algorithms for

many common scenarios have been developed.

7.6. Towards a Best-Effort Merge of Taxonomically Organized Data 122

Although there are some potential mismatches between our setting and that of tradi-

tional data exchange, we can still use the machinery of data exchange to help solve the

problem of finding the best-effort merge. The following section sketches out this process.

7.6.2 Approach

Mapping our merge scenario into the data exchange schema involves several pieces. These

include (i) describing how a dataset is translated into a source instance, (ii) determining

the source schema, (iii) determining the target schema constraints Σt, (iv) deriving the

source-to-target dependencies Σst, and (v), describing how the target instance calculated

using data exchange is translated into a dataset that satisfies the specificity constraint.

A Simple First Attempt

A first, straightforward translation is to take all concepts C in the input taxonomies T1,T2

and view them as unary relations C(x) of the source schema S, and consider concepts C′ of

the merged taxonomy T3 as relations C′(x) of the target schema T. For presence/absence

datasets in their most basic form, we can only state that a concept C is present or absent.

We model this via facts of the form C(P) and C(N), representing that some instance of

concept C was (or wasn’t) observed.

Translating Taxonomies to Schemas The next question is how to represent the tax-

onomy constraints. Using RCC-5, for any two non-empty sets A, B, exactly one of the

following relations must hold: A ≡ B, A (B, A) B, A ⊕ B, or A ! B. Proper part

(() and overlaps (⊕) were described in the introduction. Identity (A ≡ B) is defined as

∀x : A(x) ↔ B(x). The last relation (A ! B) refers to disjointness and can be represented

as ¬∃x : A(x) ∧ B(x). Identity and proper part constraints can be approximated by the

following constraints:

A ≡ B : A(P)↔ B(P), A(N)↔ B(N)

A (B : A(P)→ B(P), B(N)→ A(N)

7.6. Towards a Best-Effort Merge of Taxonomically Organized Data 123

These formulas describe integrity constraints on a schema S. The first states that if

A ≡ B in the taxonomy, then A(P) ∈ I iff B(P) ∈ I, and A(N) ∈ I iff B(N) ∈ I. The second

constraint states that if A (B in the taxonomy, then if taxon A has been reported as present

in the dataset, then taxon B must also be present. In addition, if B has been reported as

not present in the dataset, then A must also be reported as not present. Note that this

is essentially an encoding in propositional logic, and that some information is lost in the

process. For example, the disjointness relation does not constrain the schema in our case;

even though A and B are disjoint, examples of each may be observed. Given this simple

translation of concepts into relations, the partially overlaps relation does not translate into

an integrity constraint.

Translating Datasets into Instances Datasets rarely contain information about all the

nodes in the accompanying taxonomy. However, given a source schema as translated above,

a dataset may be used to populate much of the schema. For example, if A (B and B (C

and the dataset contains (A, P), we can assert the presence of B and C. Similarly, if the

dataset contains (C,N), we assert A(N) and B(N). This information can be used to determine

inconsistent datasets. If a relation contains both P and N tuples, it is inconsistent.

Calculating Σst In this simple scenario, Σst is given by the constraints above.

Translating Instances Back into Datasets Once the data exchange setting is con-

structed, we can calculate a merged dataset by taking the source datasets, representing

them as instances of the source schema, and following the dependencies to construct a tar-

get instance. To finish the process, that target instance should be translated back into a

dataset.

As discussed in the introduction, we want to avoid ambiguity in our datasets. Unfortu-

nately, the target instance as it stands will almost always be ambiguous. Even if there is

only one dataset, with one observation “A is present”, if A (B, then the target instance

calculated via data exchange will have A(P) and B(P). The B(P) is ambiguous because, once

7.6. Towards a Best-Effort Merge of Taxonomically Organized Data 124

it is taken out of the context of the data exchange setting, it is unclear whether that B(P)

is due to the A(P) or if there is some other B present which is not also an A.

One potential solution would be to only include the leaves of the merged taxonomy

when translating from a target instance to a target dataset. However, in many cases this

approach would lead to incorrect results. For example, consider two taxonomies of one

concept each, A in T1 and B in T2. Dataset D1, registered to T1, reports the presence of

A, dataset D2, registered to T2, reports the presence of B. The target instance contains

A(P) and B(P), but converting these into a target dataset that only contains A would be

incorrect. In particular, it may be the case that something that was a B but not an A was

present.

Problems with the First Attempt For data exchange to be useful, the target instance

we generate either must adhere to the specificity constraint, or it must at least provide us

with enough information to derive a dataset that adheres to the constraint.

There are many problems with the naive translation above, e.g., it is hard or impossible

to enforce the specificity constraint when translating the target instance back into a dataset.

The key difficulty in enforcing the constraint is that statements like “something that is a

B but not also an A” cannot be represented if we restrict ourselves to discussing concepts

from the taxonomies. Instead, to unambiguously describe something that is a B but not an

A requires combined concepts.

Combined Concepts and Disjunctive Constraints

Allowing the use of combined concepts in the target schema permits us to use the specificity

added by the taxonomy alignments. For example, if A overlaps B, the combined concepts

are AB, AB̄, ĀB, and the source to the target dependencies are:

A(P)→ AB̄(P) ∨ AB(P)

A(N)→ AB̄(N) ∧ AB(N)

B(P)→ ĀB(P) ∨ AB(P)

7.6. Towards a Best-Effort Merge of Taxonomically Organized Data 125

NNB

PPA

OConcept

D1 D2

Aligned

Taxonomies

C

A B D

PPD

OConcept

T1 T2

!

Data Sets

"

#

Figure 7.4: Aligned taxonomies T1, T2 with datasets to be merged.

B(N)→ ĀB(N) ∧ AB(N)

These disjunctive dependencies result in a target instance that contains uncertainty

[FKPT07]. We can query this target instance, e.g., to determine if each combined concept’s

presence or absence value is certainly known or not. Alternatively, we can materialize all

possible instances. Tables 7.7(a) and (b), for example, show two of the five possible merges6

resulting from Figure 7.4. Each of the concepts described in Tables 7.7(a) and (b) is a

most specific applicable concept: it specifies whether or not it is subsumed by each of the

original concepts. For example, the concept AB̄CD̄ is subsumed by concepts A and C, but

not subsumed by concept B or D.

Constructing the Most Specific Single World

The target instance follows a schema derived from the merged taxonomies. If the target

instance contains uncertainty, (e.g., instances of the combined concept AB̄CD̄ may or may
6There are five possible merges under the assumptions that concepts A and B are disjoint and that there

are no instances in concept C that are not in either A or B.

7.6. Towards a Best-Effort Merge of Taxonomically Organized Data 126

Concept O

AB̄CD̄ N

AB̄CD P

ĀBCD N

ĀB̄CD N

(a)

Concept O

AB̄CD̄ P

AB̄CD N

ĀBCD N

ĀB̄CD P

(b)

Concept O

C P

(c)

Table 7.7: Two possible merges (a), (b) of the datasets in Figure 7.4. A single best-effort
merge is shown in (c).

not be present) we do not have a single most specific world. One way to get a most specific

single world is to alter the merged taxonomy by removing concepts that contribute to the

uncertainty. If uncertainty arises when internal (non-leaf) concepts are included in the

target dataset, we can address this issue by removing all the leaves under the problematic

internal concepts. This in effect makes the merged taxonomy less specific, but makes the

dataset unambiguous in the context of the less specific taxonomy.

Table 7.7(c) provides an example of a single best-effort merge for the scenario in Fig-

ure 7.4.

7.6.3 Some Challenges for the Best-Effort Merge

This section provides a first, very rough sketch of how to leverage data exchange to merge

datasets that draw their concepts from taxonomies. Fleshing the process out more com-

pletely and giving it a formal foundation is the first priority in future work on the problem.

Assuming that the process described here can be used to create a best-effort merge, further

issues arise:

Disjunctive Relations In this section we have restricted our articulation relations to the

basic five set relations. RCC-5 also encodes disjunctive relations, e.g., (A (B) ∨ (A ≡ B)

is the standard definition of “isa”. There are 32 disjunctions over the basic five relations.

7.7. Related Work and Conclusion 127

It is unclear how to extend the approach as given to a scenario where the taxonomies, or

the articulations between the taxonomies, contain such disjunctions.

Restricting the Target Instance to Original Concept Terms An effect of our move

to combined concepts is that the resulting merged dataset will most likely use a vocabulary

different from the vocabulary used in the original datasets. This calls for a second trans-

lation from the calculated dataset to one using only terms from the original taxonomies.

Although this conversion should be fairly straight-forward, an algorithm for this conversion

has not yet been developed.

Translation from the Target Instance to a Dataset It remains to be seen how to

derive from the target instance a merged dataset that adheres to the specificity constraint,

and how to encode the constraint as dependencies on the target instance.

7.7 Related Work and Conclusion

This chapter has described a framework and algorithms for merging data sets when the

domains of attributes overlap and contain uncertainty. The chapter has shown that no

single merge, except in trivial cases, can satisfy all the requirements of a dataset merge, and

multiple merges must be represented. The chapter has given a possible worlds semantics for

such datasets, and algorithms for constructing these possible worlds when ambiguity arises

during the merge. The chapter has also presented an efficient algorithm for performing

the merge when ambiguity is due to articulations (i.e., source datasets do not contain

ambiguity).

The three areas most similar to the current work are traditional data integration, data

fusion, and ontology merging. In traditional data integration [Len02], two or more databases

with different schemas are combined through the definition of a common (i.e., global)

schema. The current work, on the other hand, focuses on merging datasets when the

schemas of datasets are the same, but the domains of the schema attributes may be different.

7.7. Related Work and Conclusion 128

Another difference is that in traditional data integration, the data themselves are generally

not considered; integration happens at the schema level. In the current work, however,

the alignments between the domains of the dataset attributes impact the interpretation of

the data itself. Data fusion [VMP05] tasks typically involve integrating multiple types of

information about the same objects. The data fusion setting differs from the current one in

that we are merging datasets that contain the same type of data: presence data, in this case.

Furthermore, our observations are about sets of objects rather than individuals. Ontology

merging [NM00, MFRW00a, SM01b], like traditional data integration tasks, focuses on

the schema level rather than the instance level. The work in Chapter 6, which describes

how to merge taxonomies that have been aligned with RCC-5 relations, is more similar

to ontology merging. As we have seen here, merging taxonomies is just the first step in

merging taxonomically organized datasets.

This work can be expanded in several directions. First, although we use RCC-5 to

describe relations between attribute domains, there are other algebras that may be more

suited to specific domains. For example, RCC-8 may be a better language to describe

relations between spatial regions. Allen’s interval calculus is more suited for the temporal

dimension. The types of languages used constrain the questions that may be asked. In this

work, we are satisfied to ask questions that are suitable for RCC-5 articulated domains. In

the future, other languages should be applied. Second, in the current work, domains are

independent. However, in general this may not be the case. For example, one taxonomic

alignment may apply in one spatial region, while a second taxonomic alignment may apply

in a different region. Extending the algorithms to deal with this extra complexity is not

straightforward. Third, we have only considered presence data here. As we have seen,

merging datasets with even this limited type of data is complicated. However, datasets

typically contain data other than simple presence data, so this work should be extended to

include other types of measurements. Fourth, the work on constructing a single best-effort

merge should be continued. Finally, the work must be evaluated by testing its utility for

the people who currently spend their time integrating datasets by hand. This evaluation

7.7. Related Work and Conclusion 129

will no doubt generate interesting new avenues of study.

130

Chapter 8

Implementations

8.1 Overview and Objectives

The operations and representations described throughout this thesis may be implemented

in many ways. Described below are two implementations. The first, a traditional object-

oriented implementation written in Python, is geared toward the interests of a working

metadata curator. It integrates reasoners, databases, and visualization tools to assist a

metadata curator in analyzing and creating taxonomies and articulations between them.

The second implementation is more geared toward researchers who might want to exper-

iment with different reasoners, visualizations and reports. This system breaks the first

system into a number of components that may be tied together within a workflow system.

The proposed implementation uses the Kepler workflow system to create a framework to

make it easy for researchers to experiment with alternative reasoners and algorithms. Before

launching into the implementations, however, there are a fair number of details common to

both. These are described first.

8.2. Features Common to All Implementations 131

8.2 Features Common to All Implementations

At a high level, the CleanTax system supports metadata curators in the task of creating,

modifying and analyzing articulations between taxonomies, merging taxonomies, and merg-

ing taxonomically aligned datasets. CleanTax is also a platform for studying reasoning

about taxonomies and articulations.

The CleanTax system takes as input any number of taxonomies, articulations between

taxonomies, and sets of additional taxonomic assumptions, and answers the questions asked

in section 1.4. CleanTax is extensible such that different reasoning engines may be plugged

in. This means that CleanTax contains modules for converting inputs into formats un-

derstood by the given reasoners.

8.2.1 Input Formats

CleanTax supports several input formats:

Taxonomic Concept Schema

CleanTax accepts as input an XML document adhering to the Taxonomic Concept Schema

(TCS). More information about TCS may be found at http://tdwg.napier.ac.uk/index.

php?pagename=HomePage and the specification for the schema is here: http://tdwg.napier.

ac.uk/doc/tdwg_tcs.pdf

Depending on the options set, the TCS document will be parsed into one or several CTI

files, described below.

CleanTax Input

CleanTax also has a native format for inputting taxonomies and articulations. This

format is described in Appendix A.3.1.

http://tdwg.napier.ac.uk/index.php?pagename=HomePage
http://tdwg.napier.ac.uk/index.php?pagename=HomePage
http://tdwg.napier.ac.uk/doc/tdwg_tcs.pdf
http://tdwg.napier.ac.uk/doc/tdwg_tcs.pdf

8.3. Python 132

8.2.2 Output Formats

The primary product of a CleanTax run is a file describing the outcome of all the logic

runs. The file can either be tab delimited or appear as an HTML table. If the latter, then

hyperlinks to the input and output files of the reasoners are available, as well as a link to a

graphic representation depicting inferred relations between nodes in the taxonomies. The

reports provided by CleanTax are described in Appendix A.3.2.

8.3 Python

The command-line version of CleanTax supports TCS and CTI inputs and gives users

control over what kind of logic tests to perform (implication, satisfiablity), which nodes to

perform tests on, which relations to test, and which GTCs to try. If the input file is a TCS

document, command-line options can select which taxonomies in the document should be

used and can select specific species within the document to study. A full list of the command

line options is provided in Appendix A.3.3.

In addition to the command line option, CleanTax may be used via a Web interface

(see Figure 8.1). The interface supports reading taxonomic alignment files in the CTI

format, applying single GTC sets, and it provides a variety of visualization options for the

alignments. The Web interface also allows users to pick their favorite reasoner, or to permit

CleanTax to determine the best reasoner for the given problem. In future work, the Web

interface should support dataset integration. The expected result of a dataset integration

may be seen in Figure 8.2. This output shows the alignment used to merge the datasets,

the result of merging the aligned taxonomies, the starting datasets, and the resulting set of

merged datasets. Before reaching this screen, the user is told how many possible merged

datasets exist, and the user can opt not to display the merged datasets if there are too many.

In the future, additional navigation of the possible merged datasets will be developed.

8.4. Workflows 133

Figure 8.1: CleanTax Web interface

8.4 Workflows

Scientific workflows are networks of data analysis components linked together to perform

complex tasks, including retrieving data from databases, performing specific algorithms

on data, transforming data, and storing data. Scientific workflow environments, like Ke-

pler [kep], allow researchers to construct and execute workflows on their desktop computers.

This ability helps automate repetitive tasks and allows others to see how an analysis was

performed.

8.4. Workflows 134

8.4.1 Rationale for Workflow Implementation

Many aspects of the CleanTax system lend themselves to application within a workflow

environment. For example, a Kepler actor that takes as input a taxonomy and a stream of

global taxonomic constraint tokens could act like a filter, outputting only those constraints

under which the taxonomy is consistent. Similarly, the reasoners used by CleanTax could

be wrapped into generic “prover” and “model finder” actors, allowing people interested

in benchmarking different reasoners to change the reasoner used in a given CleanTax

workflow.

8.4.2 Functional Representation of CleanTax

Implementing CleanTax in Kepler is in a very early stage. The first step in the implemen-

tation has been to design functional programming signatures for the primary CleanTax

functions. Workflows tend to be dataflow oriented, and there is a close relationship between

dataflow-oriented systems and functional programming [LAB+06].

8.4.3 Basic Entities

Chapters 1 and 2 introduced many of the objects that are used throughout this dissertation.

These atomic objects may be considered as opaque strings.

type Authority = String The name of an authority who stated something.

type Node = String The name of a node in a taxonomy.

type Axiom = String Axioms are precisely defined and could be subdivided into terms,

connectives, and quantifiers. However, at this level of precision, axioms will be con-

sidered opaque strings.

type Explanation = String An explanation (e.g., for a step in a proof).

8.4. Workflows 135

type Model = String Similarly, a model, which provides an example of how a set of

axioms might be satisfied, is a complex object, but at this level of precision, a model

may be treated as an opaque string.

type Relation = String A symbol relating two nodes. Note that nodes are considered

to be sets. In some formalizations, sets might be combined using set operations like

intersection or union. In these cases, the results of the set operations will also be

considered nodes for this level of formalization.

type GTC = String The name of a global taxonomic constraint meant to be held by all

nodes in a taxonomy. These GTCs, when applied to a taxonomy represented by a

given language, will result in additional axioms in that language.

type TaxonomyRule = String A rule defining a relationship between nodes in a taxon-

omy where the relationship is a partial order relationship. As before, this rule could

be defined in a more fine-grained way. However, at this level of precision, it is best

to consider this rule a simple string.

8.4.4 List Types

Some lists of the basic entities above are used frequently enough to deserve their own types.

type CompoundGTC = [GTC] Global taxonomic constraints can be grouped together

(e.g., non-emptiness and sibling disjointness). These compounds are often used as in-

puts, and can themselves be grouped into lists.

type CompoundRelation = [Relation] Single relations, such as equals, can be grouped

into lists that are generally considered to indicate disjunctions of relations. For ex-

ample, the list [equals, disjoint] represents the relation “equals or disjoint.”

8.4. Workflows 136

8.4.5 Complex Types

The following types are built up from the previously listed atomic types and other complex

types.

type ProofLine = (Axiom, Explanation) A line of a proof is an axiom and a way that

axiom was derived.

type Proof = [ProofLine] A proof is a list of proof lines.

type ProofResult = (Boolean, Proof) The result of an implication test is a true/false

answer and a proof of that answer.

type ConsistencyResult = (Boolean, Model) The result of a consistency test is a

true (found a model) / false (failed to find a model) answer, and if a model is found,

the model.

type Taxon = (Node, Authority) A taxon is a node in a taxonomy and the authority

who defined that taxon. Note that the authority for a taxon and the authority for

the taxonomy containing that taxon may be different.

type TestPair = (Taxon, Taxon) We often want to compare taxa, testing whether or

not some relationship holds between them.

type TaxonomyConstraint = (Authority, Axiom) A rule defining an additional con-

straint between nodes in a single taxonomy. An authority is needed because a con-

straint might be stated by the creator of the taxonomy, or an assumption made while

analyzing the taxonomy.

type Taxonomy = (Authority, [TaxonomyRule], [TaxonomyConstraint]) A tax-

onomy has an authority, a list of rules defining that taxonomy, and a list of additional

constraints.

type Articulation = (Authority, Axiom) A rule defining an inter-taxonomy constraint.

8.5. Basic Operations 137

8.5 Basic Operations

Defined here are basic operations used to satisfy various use cases. The operations are

described and given Haskell-style signatures. These operations may be seen as the basic

commands in a language. They will be combined in the subsequent section to create more

complex operations.

powerset:: []→ [[]]

Given a list of objects, the powerset function returns a list of lists where each sublist

is a subset of the elements in the original list.

proof:: [Axiom]→ Axiom→ ProofResult

Given a list of axioms and a goal, test whether the goal is implied by the axioms.

Formally, does [Axiom] ∪Goal |= 2 ?

consistency:: [Axiom]→ ConsistencyResult

Given a list of axioms, check whether the axioms are logically consistent. Formally,

is there an I such that I |= [Axiom] ?

axiomitizeTaxonomy:: Taxonomy → [Axiom]

Render a given taxonomy into a set of axioms.

axiomitizeArticulations:: [Articulation]→ [Axiom]

Render a set of articulations into a set of axioms.

instantiateGTC:: Taxonomy → GTC → [Axiom]

Given a taxonomy and the name of a global taxonomic constraint, apply the GTC to

the taxonomy and return a set of axioms that implement that GTC for that taxonomy.

instantiateGTC:: Taxonomy → CompoundGTC → [Axiom]

Same as above, but apply a set of GTCs.

8.6. Complex Operations 138

instantiateGTC:: [Articulation]→ GTC → [Axiom]

Given a set of articulations and the name of a global taxonomic constraint, apply the

GTC to the articulations and return a set of axioms that implement that GTC for

those articulations.

instantiateGTC:: [Articulation]→ CompoundGTC → [Axiom]

Same as above, but apply a set of GTCs.

proved:: ProofResult→ Boolean

Given a proof result, return true if the goal was proved and false otherwise.

consistent:: ConsistencyResult→ Boolean

Given a consistency result, return true if a model was found.

8.6 Complex Operations

The following operations are built up from the simple ones described in the previous sec-

tion. Some of the operations use functional programming functions such as filter, map,

intersection, and union. For more information about these functions, see [Jon02].

consistentGTCSets:: Taxonomy → [CompoundGTC]→ [CompoundGTC]

Given a taxonomy and a list of sets of GTCs (e.g., [[sibling disjointness, non-emptiness

], [coverage, sibling disjointness]]) return a list of GTC sets under which the taxonomy

is consistent.

consistentGTCSets taxonomy gtcset = filter (consistent)

(map (consistency (\gtc −> instantiateGTC taxonomy gtc) gtcset))

consistentGTCSets:: [Articulation]→ [CompoundGTC]→ [CompoundGTC]

Given a taxonomy and a list of sets of GTCs (e.g., [[sibling disjointness, non-emptiness

], [coverage, sibling disjointness]]) return a list of GTC sets under which the taxonomy

is consistent.

8.6. Complex Operations 139

consistentGTCSets articulation gtcset = filter (consistent)

(map (consistency (\gtc −> instantiateGTC taxonomy gtc) gtcset))

allConsistent:: Taxonomy → Taxonomy → [Articulation]→ [CompoundGTC]→
[CompoundGTC]

Given two taxonomies, a set of articulations between them, and a list of sets of

GTCs, return a list of GTC sets under which the taxonomies and articulations are

consistent.

allConsistent t1 t2 arts gtcs =

(intersection (consistentGTCSets t1 gtcs)

(intersection (consistentGTCSets t2 gtcs) (consistentGTCSets arts gtcs)))

testPairForRelation:: Taxonomy → Taxonomy → [Articulation]→ [GTC]→
TestPair → CompoundRelation→ ProofResult

Given two taxonomies, a set of articulations between them, a compound GTC, a pair

of nodes to test, and a relation to check, try to prove that the relation holds between

the two nodes.

testPairForRelation t1 t2 arts gtc testpair relation =

proof axioms goal

where axioms = (union (instantiateGTC t1 gtc)

(union (instantiateGTC t2 gtc)

(instantiateGTC arts gtc)))

goal = makeAxiom fst(testpair) snd(testpair) relation

deductiveClosure:: Taxonomy→ Taxonomy→ [Articulation]→ [CompoundGTC]→
[Node]→ [Node]→ CompoundRelation → [ProofResult]

This computes the deductive closure of a pair of taxonomies and a set of articulations,

given a set of relations to test and a set of assumptions under which to test them.

Given two taxonomies, a set of articulations between them, a set of compound GTCs,

two sets of nodes, and a set of relations to check, get every pair of nodes (one from

8.7. Contributions and Future Work 140

each of the provided groups) and check each relation in the list of relations under

each compound GTC in that list.

deductiveClosure t1 t2 art gtcs nodeset1 nodeset2 relations =

[testPairForRelation t1 t2 art gtc testpair relation |

gtc <−− allConsistent t1 t2 art gtcs,

testpair <−− getTestpairs t1 t2 nodeset1 nodeset2,

relation <−− relations]

8.7 Contributions and Future Work

This section described some of the details in implementing the CleanTax framework. A

fair amount of progress has been made in building a traditional object-oriented version

of the framework that supports pluggable reasoners and a variety of inputs formats and

generates a number of useful reports. These reports include information about taxonomy

and articulation consistency, calculations of an alignment’s deductive closure, and statistics

reflecting how long various processes took. Work on a Grid-enabled version of the framework

has also been undertaken, although algorithms for effective distribution of tasks across

multiple CPUs have yet to be written. Work on a scientific workflow version of CleanTax

is at a very early stage, but functional descriptions of CleanTax features have been

designed, which should simplify a migration of CleanTax to a system like Kepler.

8.7. Contributions and Future Work 141

Figure 8.2: Results of a dataset merge in the CleanTax Web interface (notional).

142

Chapter 9

Possible Extensions: Explanations,

Repairs, and Uncertainty

9.1 Overview and Objectives

Chapters 4 and 5 described mechanisms for discovering inconsistencies in taxonomies and

articulations, and ways to discover new relationships between taxa. In an interactive setting,

a metadata curator may want to know why a certain articulation was inferred, or why an

inconsistency occurs. With these explanations in hand, a curator may want to repair an

inconsistency, or if an inference is incorrect, discover ways to correct the inference while

introducing no new inconsistencies or more incorrect inferences. Ambiguity should be

avoided as well. The representation of taxonomies and articulations given so far provides

precise ways of describing uncertainty. In the worst case, the relationship between two taxa

is completely unknown, or maximally uncertain. In the best cases, two taxa are related

with a single relation, such as “equals.” In between there are cases with some uncertainty,

such as “overlaps or disjoint.” If the goal of a metadata curator is to provide the most

specific metadata possible, tools for reducing uncertainty in taxonomies and articulations

will be important. This chapter covers these three topics: explanations (section 9.2), repairs

9.2. Explanations 143

(section 9.3), and reducing uncertainty (section 9.4).

9.2 Explanations

Users of automated reasoning systems often demand explanations for why a system reached

a certain conclusion [BMPSB99]. Early work on expert systems, such as the MYCIN

system for medical diagnosis [SDA+75], showed that users will not trust a system unless

that system can explain its recommendations. A system like CleanTax, which judges

alignments inconsistent or recommends additional articulations, must be able to explain its

reasoning. This section begins with a brief survey of recent relevant explanation systems.

It then describes some requirements an explanation system should meet. The section will

end with a description of the currently implemented explanation system and plans for its

extension.

9.2.1 Prior Work

Not many alignment systems implement an explanation component. Some exceptions to

this are iMAP [DLD+04], a system for generating database schema matches, and work

using Description Logics [MB95, McG96, BFH+99, DHS05].

iMAP uses a variety of search techniques to find one-to-one matches between elements

in database schemas, as well as more complex matches, such as address = concat(city,

state). To help users interact with the system, iMAP employs an explanation module

that can explain why a certain match was or was not made, and can provide reasons for

the rankings it gives mappings. The explanations it offers often present the techniques

iMAP used to make a decision, as well as dependencies that may have prevented iMAP

from selecting a given match. For example, in a real-estate setting, an attempt to match

list-price in one schema to price * (1 + monthly-fee-rate) in another schema might

fail because monthly-fee-rate has already been matched to month-posted, which is known

to be different from list-price. Most of the explanation module of iMAP depends on

9.2. Explanations 144

this type of dependency, reducing its relevance to the CleanTax framework somewhat.

However, the requirements presented in the iMAP work are relevant. [DLD+04] lists three

types of questions that users ask in an alignment task: explain an existing match, explain

an absent match, and explain match ranking. All three of these types of questions are

relevant in the CleanTax framework. The latter becomes sensible when attempting to

reduce uncertainty (see section 9.4).

In Description Logic, all reasoning can be reduced to questions about concept sub-

sumption. The classic texts on explanations of reasoning in DL [MB95, McG96, BFH+99]

provide a set of explanation rules for describing subsumption reasoning using a sequent cal-

culus that parallels the tableaux reasoning used in DL. Examples of these rules are “Apply

the double negation elimination rule” and “Apply de Morgan’s laws.” These explanations

work well for those familiar with logic, but are not suitable for näıve users. [DHS05]

argues that LFOL resolution can help shed light on explanations for DL reasoning. They

cite research from [Eis91] showing that any LFOL resolution proof has a minimal refuta-

tion graph. This minimal refutation graph includes only those formulas contributing to

the proof. The framework described by [DHS05] translates DL axioms into LFOL for the

purpose of generating simple explanations for the unsatisfiability of a given DL concept. As

the CleanTax framework already employes varieties of LFOL, minimal refutation graphs

will form an important part of the CleanTax explanation module.

9.2.2 Requirements

Here is a brief list of desiderata for an explanation system.

Queries

As mentioned above, an explanation system should be able to explain why a taxonomy,

articulation, or alignment is inconsistent. It should also be able to explain why an inference

was made, as well as why an inference was not made. Finally, when providing ranked

information, the system should be able to justify the ranking.

9.2. Explanations 145

Provenance

The provenance of information used in the reasoning is extremely important. In terms of a

single proof, this includes the sources of the initial axioms used in the proof. Provenance

information comprises both the way the information was introduced into the system, as

well as the original source of information itself. For example, a biological taxon has an

authority, such as Linnaeus, 1754, and it also plays a role in a provided taxonomy, Kartesz,

2004. Similarly, an articulation may be stated by an expert (Peet, 2005) or it may be

created by the system.

Completeness and Clarity

Explanations can range from complete proofs output by an automatic prover, to digested

explanations meant for those unfamiliar with logic-based representations.

Presentation Methods

An explanation system should support both textual explanations and graphical represen-

tations of explanations. The former lend themselves to portability in terms of how an

explanation system can be integrated into other systems. The latter can improve the clar-

ity of the connections between various aspects of an explanation.

Navigating

The explanation of one relationship often raises questions about other relationships. If

an automatic reasoner deduces something surprising involving one taxon in a taxonomy,

there may be other surprising relations involving that taxon. Therefore, the ability to

navigate explanations is important. Navigating an explanation allows users to ask followup

questions.

9.2. Explanations 146

Figure 9.1: Representing only a subset of the R32 relations in an alignment. The dashed
line represents an inferred ≡ relation.

9.2.3 Initial Results

Initial work on the explanation module for CleanTax has focussed on using graphviz [gra]

to sensibly render images of alignments and Prover9 proof trees. This work was done in

collaboration with two UC Davis undergraduate students: Sichen Bao and Sean Riddle.

9.2. Explanations 147

Drawing Alignments

The simplest interface to an explanation for an alignment is a graphical representation of

the alignment itself. Given that every pair of nodes in an alignment has some relation

between them, the graph can be quite cluttered. One way to limit the clutter is to draw

only a subset of the R32 relations. For example, Figure 9.1 shows only ≤isa relations, and

the ≡ and {≡,(} articulations. The dashed line between the buttercup10517 taxon and

the buttercup10421 taxon represents an inferred relation. Another way to reduce the

clutter in alignment graphs is to omit obvious existing relations, notably reflexive relations

(N ≡ N) and transitive edges (if N (M and M (L, the transitive relation N (L is

not drawn). Initial experiments with designing interactive interfaces for clearly visualizing

alignments have had some success, but far more work is necessary in this area.

Drawing and Navigating Proof Trees

Clicking on an edge in Figure 9.1 should result in some sort of explanation. The edge may

represent a relation supplied by an expert, or it may represent an inference. If it is an

inference, the proof resulting in that relation should be shown. Figure 9.2 shows an initial

attempt at representing a proof. This proof tree is the result of running a Prover9 proof

through a program that ships with Prover9 called prooftrans, and then running that

output through a program by David A Wheeler called gvizify [gvi] to convert the proof

into a dot file, which is then drawn using the graphviz dot program. This proof explains

the derivation of the articulation buttercup10517) buttercup10521. The double octagon

represents the goal, and single octagons represent clauses created by denying the goal (the

articulation being tested). Ovals represent resolutions steps, and steps with no shapes

around them represent clausification. Perhaps the most important part of the graph are

the square nodes, which represent the formulas in the alignment used to derive the proof.

Each of the clauses in Figure 9.2 may appear in many other proofs. It may be useful

for a user to click on a node and retrieve the other proofs that used that clause. Creating

9.3. Repairs 148

links between proofs in this way can help identify interesting or problematic aspects of the

alignment.

9.2.4 Future Work

The proof tree shown in Figure 9.2 is legible to those who understand logic and the process

of resolution. However, it is far from a generally useful explanation tool. Creating visual-

izations that will be informative to a general user remains work to be done. In addition,

the creation of textual explanations based on these proof trees remains to be done. The

restricted domain of taxonomies and articulations may make building a visual and textual

explanation system simpler than it is for proofs in a more general first-order language. An-

other task for future work is to build a mechanism for querying the alignment graph about

articulations it did not make. The failure to prove an articulation cannot be represented

using a proof tree (after all, the proof failed). Instead, the best way to explain the lack of

an articulation may be to present a consistent interpretation I under which the articulation

is violated. The Mace4 model finder can find such models, but representing the models is

not straightforward. Future work will involve building an interface to ask questions about

missing articulations, and mechanisms for displaying consistent models that violate the

articulation in question.

9.3 Repairs

Alignments may be inconsistent, or if they are consistent, they may contain inferences

deemed incorrect by an expert. In both of these cases, the alignment must be repaired

in some way. The cases are quite different. In the former case, a prover can be used to

pinpoint the formulas that lead to the discovered inconsistencies (see above discussion on

minimal refutation graphs). The latter case is trickier, and relates strongly to the topic of

belief revision, which will be dealt with in the section on uncertainty (section 9.4).

9.3. Repairs 149

9.3.1 Prior Work

Much of the work on repairing inconsistencies in databases [Ger96, MT99, GGZ03] focuses

on repairing violations of integrity constraints caused by the introduction of tuples. An

exception to this rule is [Har01], which focuses specifically on inconsistencies in constraints.

However, the algorithms described in [Har01] do not consider logic-based constraints, but

rather work from a graph-theoretic perspective. Even with these domain mismatches, the

work on inconsistency repair in databases introduces a number of terms and ideas that will

arise later in this section.

Inconsistencies in ontologies have received more attention. [HvHH+05] presents four

different contexts for inconsistencies in ontologies: (i) ensuring that new information does

not make a consistent ontology inconsistent, (ii) diagnosing and repairing extant inconsis-

tencies, (iii) attempting to reason despite the inconsistencies, and (iv) managing inconsis-

tencies between different versions of the same ontology. Inconsistency in the CleanTax

framework is primarily of the second kind.

In addition to defining types of inconsistencies, [HvHH+05] provides definitions for sev-

eral important concepts, such as maximal consistent sub-ontology and minimal consistent

sub-ontology. These definitions transfer easily to the domain of taxonomies.

Definition 9.1 (Maximal consistent sub-taxonomy). A taxonomy, T ′ is a maximal consis-

tent sub-taxonomy of T if T ′ ⊆ T and T ′ is consistent and every T ′′ with T ′ ⊂ T ′′ ⊆ T is

inconsistent.

Definition 9.2 (Minimal inconsistent sub-taxonomy). A taxonomy T ′ is a minimal incon-

sistent sub-taxonomy of T if T ′ ⊆ T and T ′ is inconsistent and every T ′′ with T ′′ ⊂ T ′ is

consistent.

Finally [HvHH+05] provides algorithms for locating inconsistencies and repairing them

once they have been located. The algorithms first find an unsatisfiable concept, and then

find the minimal sub-ontology for that concept. This is the subset of the ontology in which

9.4. Uncertainty 150

the concept is unsatisfiable, minus any redundant formulas. Once this subset is discovered,

the minimal set of axioms that need to be removed is calculated (though [HvHH+05] do

not provide an algorithm for this).

A similar approach is taken by the DION [SH05] prototype. Rather than present a gen-

eral framework for ontology repair, as in [HvHH+05], DION is very closely tied to reasoning

in a Description Logic framework. However, DION has the ability to pinpoint concepts in

ontologies that contribute to many local inconsistencies in an ontology. Focusing on these

problematic concepts may result in a faster repair time for the entire ontology. DION

provides several algorithms for pinpointing inconsistencies, and [SH05] shows that their

complexity is exponential to the size of the set of formulas contributing to inconsistencies.

9.3.2 Future Work

Currently, no effort has been made to repair inconsistencies in CleanTax. In the future,

algorithms such as those outlined in [SH05] should be incorporated. Because the Clean-

Tax framework is more focused than that of Description Logic ontologies, there is a good

chance that more efficient algorithms for pinpointing multiple inconsistencies and deriving

the minimal sets of repairs will be found. The notions of global taxonomic constraints

(GTCs) should also be applied when locating and repairing inconsistencies. As mentioned

in 4.3.2, globally applied taxonomic constraints can be locally defeasible. Searching for

local violations of a GTC might provide guidance for heuristics searching for minimal sets

of repairs.

9.4 Uncertainty

Uncertainty is most frequently modeled by assigning each formula a probability or some

other number representing the certainty that the formula is correct [Goo61]. This type of

numerical approach casts reasoning under uncertainty into the worlds of Bayesian analysis

and fuzzy logic [Zad65]. In MoReTaX [GB03b], uncertain knowledge is marked with a

9.4. Uncertainty 151

question mark — a coarse boolean qualification rather than a probabilistic one. In this

dissertation, on the other hand, uncertainty is modeled by disjunctive relations, such as

“equals, includes, or overlaps.” If the goal of a metadata curator is to create articula-

tions with the least uncertainty, alignments with a great number of disjunctions should be

avoided. This section describes how uncertainty is measured in the current context and

ways to visualize uncertainty in articulated taxonomies.

9.4.1 Uncertainty Metrics

There are many ways to quantify the uncertainty in a set of taxonomies and articulations

between them. The factors to consider when generating an uncertainty metric are:

Taxon or relation centered. Uncertainty may be calculated by considering the average

uncertainty of the taxa, or an average uncertainty of the R32 relations between them.

Taxonomic relation weights. Each relation will be given a level of uncertainty. The

most basic assignment is to set the weight of a taxonomic relation equal to the number

of B5 relations in the disjunction. For example, the equals relation would receive

a weight of 1, while complete uncertainty {≡,(,),⊕,!} would receive a weight of

5. However, alternative mappings may be sensible. For example, a curator might

consider the isa relation {≡,(} as one having no uncertainty and assign it a weight

of 1.

Taxonomic relation type weights. There are several classes of taxonomic relations: the

≤isa constraints, additional intra-taxonomy constraints TC, and articulations AC .

Each of these classes of taxonomic relations might be assigned a different weight

(potentially zero) when calculating the total uncertainty in an alignment.

Source weights. Taxa and relations might be provided by trusted sources, they might be

posited by a metadata curator, or they might be inferred by an automatic reasoner.

Different sources might be given different weights. For example, an intra-taxonomic

9.4. Uncertainty 152

relation provided directly by the creator of a taxonomy might not be considered in

the uncertainty calculation at all.

Fine grained fixing. A metadata curator might select, by hand, specific articulations or

intra-taxonomy relations that may not be changed. These inviolate relations will not

enter into a calculation of uncertainty.

These factors might be combined in a number of ways. For example:

Average taxon uncertainty. Each taxon is involved in a number of taxonomic relations.

Sum the number of relations involved, giving a value of one to each B5 relation (so

that complete uncertainty has a value of 5 and an isa relation has a value of 2) and

divide by the number of relations. Sum up this value for each taxon and divide by

the number of taxa.

Average articulated taxon uncertainty. Similar to above, but only include articula-

tions when calculating taxon uncertainty.

Average taxonomic relation uncertainty. Each relation has a degree of uncertainty.

Measure the average of these degrees.

Average articulation uncertainty. Similar to above, but only include articulations.

Each of these options recommends a different model for calculating and minimizing un-

certainty. Each model transforms the goal of minimizing uncertainty in a given articulation

into a search through a minimization space. This search may be addressed using traditional

algorithms, such as A*. The exploration of these models awaits future work.

9.4.2 Reducing Uncertainty

Once a metric of uncertainty is in hand, the next question is how to reduce that uncer-

tainty. In an interactive setting, a user should be presented with a total uncertainty, then

a summary of the sources of that uncertainty. The type feedback presented to the user can

9.4. Uncertainty 153

take various forms. The simplest and most general feedback would simply present a list

of articulations in order of their uncertainty. Another type of feedback might involve the

concepts in order of the average uncertainty in their incident relations.

A ranked listing of decisions that could be made to reduce uncertainty would also be

useful. However, determining the impact of a change to an alignment is quite complex.

Changing any articulation may alter the deductive closure of the alignment, creating po-

tential inconsistencies, new articulations, and potentially more uncertainty. Any change

must (i) leave unchanged those relations that have been marked as inviolate, and (ii) result

in a consistent alignment.

The act of reducing uncertainty in an alignment places the problem squarely into the

realm of belief change. In essence, changing a R32 constraint by removing a disjunction

(e.g., changing {≡,(} to {≡,} may be seen as belief revision — adding information (not

() while maintaining consistency. Similarly, changing a R32 constraint by adding a dis-

junction may be seen as belief contraction — the removal of a belief while maintaining

consistency. The operations of revision and contraction have been studied extensively. In

particular, the AGM framework [AGM85] describes a set of postulates defining a rational

belief revision operator, a set of postulates defining a rational belief contraction operator,

and shows how they are related. Within the AGM framework, notions of revision preference

orderings [KM91] and iterated revision [DP97], can inform the order in which changes to

an alignment can be made to minimize uncertainty while maximizing the plausibility of the

resulting alignment.

Minimal Uncertainty

A given alignment, along with an uncertainty metric, including a set of inviolate relations,

will have a minimum uncertainty, defined as the consistent alignment with smallest possible

uncertainty given the supplied uncertainty metric. Although this number may be calculated

by doing a complete analysis of every possible combination of R32 relations on the malleable

constraints, it is not certain that the minimum can be reached through iterative revision,

9.4. Uncertainty 154

or even if it is sensible. It may, however, provide an interesting statistic for a user.

Legal Transformations and Reachability

Another factor in belief revision is the type of revisions that are legal. For example, given

an R32 constraint, can a single revision change only one disjunction (either by adding one or

removing one) or can a revision perform a more radical change? Decisions such as these can

affect the “reachability” of possible worlds, where each alignment is considered a possible

world. This touches on an alternative approach to belief revision, one that works on the

models that satisfy a given set of formulas. [Dal88]

Heuristics

Belief revision can occur as a series of iterative steps, altering one constraint, then another.

This iterative process defines a search space of transformations. This search space can be

enormous, necessitating heuristics and optimizations for searching through the minimiza-

tion space. These heuristics and optimizations may be used to rank decisions a user might

make to reduce uncertainty. Some example heuristics are:

• Taxa at different “heights” in a taxonomy might have different impacts on uncertainty.

For example, uncertainty in taxa with many upper bounds may propagate up the taxonomy.

• Some relations, or combinations of relations, should be removed as quickly as possible.

For example, we have seen that removing all R32 relations containing {(,)} except those

containing ⊕ may allow the system to drop to a polynomial-time reasoning language.

• Some relations may be easier to remove. Again any combination containing {(,)} might

be easy to disambiguate.

9.4.3 Using Dataset Merges to Guide Uncertainty Reduction

The number of possible unambiguous dataset merge results is determined by the provided

taxonomy alignments. If some of the possible dataset merges are known by the user to be

9.5. Additional Research and Development 155

impossible, marking them as such may have implications for the articulations that led to

the inclusion of those possible worlds. In other words, it may be possible to improve an

alignment by eliminating possible merged datasets. It may also be possible to determine

which articulations in the alignments engender the greatest number of possible worlds.

Providing a user with a ranked list of articulations that created the biggest increases in the

number of possible worlds can help improve the taxonomic alignments, reduce the number

of possible merges, and increase the specificity of a single best-effort merge.

9.4.4 Visualizations

To assist a user in gaining a sense for where uncertainty lies, there should be “uncertainty

views” of an articulation. These views can emphasize the uncertainty of taxa by empha-

sizing those that have a high average incident uncertainty, or emphasize the uncertainty in

the constraints by using lines of different thickness for differing levels of uncertainty.

9.5 Additional Research and Development

Supporting incremental changes to alignments. The current CleanTax implemen-

tation rechecks the entire alignment whenever it checks for consistency and new inferences.

We would like to be able to perform these checks incrementally, as users add, modify, or

remove articulations in the alignments, or modify the taxonomies. The goal is to improve

system response time for users creating and editing mappings between large taxonomies,

which is frequently the case for many context domains (including species classifications).

Merging and reasoning with more complex observational data. Prior work

described how to merge taxonomies [TBL08] and how to merge datasets when the data

were simple presence/absence observations [TBL09b]. We would like to expand the types

of data that may be merged in the system, starting with categorical data and numerical

measures such as species abundance counts. We will also explore context constraints and

their influence on the complexity of our merge algorithms. Context is used in many scien-

156

tific datasets to define the scope of particular observations. For instance, species may be

observed under different environmental factors such as nitrogen treatments. In this case,

the treatment attribute (the level of nitrogen treatment) denotes a context for the observed

species, implying in this case that the individual observed in one treatment was different

from an individual of the same type in another treatment context.

9.6 Conclusion

The contributions of this dissertation include a formalization of taxonomies, articulations,

and alignments, as well as definitions of taxonomy and alignment consistency. Basing the

articulation language on the RCC-5 topological algebra has proven useful in representing

incomplete knowledge, and its application in the context of taxonomic alignment represents

a new contribution. A representation of this formalization in monadic first-order logic has

been presented, and optimizations for quickly calculating all relationships implied by an

alignment have been given and evaluated. In addition, this dissertation has described a

mechanism for merging taxonomies and merging datasets of taxonomically organized data.

Work on creating a framework for testing algorithms and reasoners has resulted in a system

that has been applied to real-world datasets and has discovered several inconsistencies and

many new relationships. In addition, initial steps toward formalizing uncertainty reduction

and building tools to support explanations of inferred relations have been taken and re-

ported. Finally, preliminary research on repairing inconsistencies and applying other logics,

such as Description Logics and propositional logic, has been undertaken and described.

Taxonomies exist all around us. Hopefully this thesis has shed some light on what these

taxonomies mean, and how they relate to one another.

157


















































































































































































































































































































































































































































































































































































































































































 





































































































Figure 9.2: Graphical representation of the proof that buttercup10517) buttercup10521 .

158

Bibliography

[AGM85] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic

of theory change: partial meet contraction and revision functions. Journal of

Symbolic Logic, 50(2):510–530, 1985. 153

[AGU72] Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. The transitive reduction

of a directed graph. SIAM Journal on Computing, 1(2):131–137, 1972. 92, 94

[AGY05] A. Avesani, F. Giunchiglia, and M. Y. Yatskevich. A large taxonomy map-

ping evaluation. In Proc. of the 4th International Semantic Web Conference

(ISWC), pages 67–81, 2005. 2

[AJKO08] Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan Olteanu. Fast

and simple relational processing of uncertain data. In ICDE, pages 983–992.

IEEE, 2008. 104

[AKG87] Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. On the representa-

tion and querying of sets of possible worlds. In Umeshwar Dayal and Irving L.

Traiger, editors, SIGMOD, pages 34–48. ACM Press, 1987. 103

[AKO07] Lyublena Antova, Christoph Koch, and Dan Olteanu. World-set decomposi-

tions: expressiveness and efficient algorithms. In Proceedings of ICDT, pages

194–208, 2007. 108

159

[AL08] Marcelo Arenas and Leonid Libkin. XML data exchange: consistency and

query answering. Journal of the ACM, 55(2):1–72, 2008. 121

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Communi-

cations of the ACM, 26(11):832–843, November 1983. 77

[BBG01] Massimo Benerecetti, Paolo Bouquet, and Chiara Ghidini. On the dimen-

sions of context dependence: partiality, approximation, and perspective, vol-

ume 2116, page 59. Springer, Berlin / Heidelberg, 2001. 9

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,

Implementation, and Applications. Cambridge University Press, 2003. 82, 177

[Beh22] Heinrich Behmann. Beiträge zur algebra der logik, insbesondere zum entschei-

dungsproblem. Mathematische Annalen, 86(3-4):163–229, September 1922. 37

[Ben48] L. D. Benson. A treatise on the North American Ranunculi. American Mid-

land Naturalist, 40:1–261, 1948. 49

[Ben94] Brandon Bennett. Spatial reasoning with propositional logics. In Jon Doyle,

Erik Sandewall, and Pietro Torasso, editors, KR’94: Principles of Knowledge

Representation and Reasoning, pages 51–62. Morgan Kaufmann, San Fran-

cisco, California, 1994. xii, 40, 76, 77

[Ber95] Walter G. Berendsohn. The concept of “potential taxa” in databases. Taxon,

44:207–212, 1995. 35

[Ber03] Walter G. Berendsohn. MoReTax – Handling Factual Information Linked to

Taxonomic Concepts in Biology. Number 39 in Schriftenreihe für Vegetation-

skunde. Bundesamt für Naturschutz, 2003. 35, 163, 164

160

[BFH+99] Alexander Borgida, Enrico Franconi, Ian Horrocks, Deborah L. McGuinness,

and Peter F. Patel-Schneider. Explaining ALC subsumption. In Patrick Lam-

brix, Alexander Borgida, Maurizio Lenzerini, Ralf Möller, and Peter F. Patel-

Schneider, editors, Description Logics, volume 22 of CEUR Workshop Pro-

ceedings. CEUR-WS.org, 1999. 143, 144

[BGW93] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Set constraints are

the monadic class. In Logic in Computer Science, pages 75–83, 1993. 37, 73,

82, 113

[BJBM01] Chad Berkley, Matthew Jones, Jivka Bojilova, and Daniel Higgins Metacat.

Metacat: a schema-independent XML database system. In SSDBM, pages

171–179, 2001. 98, 121

[Blu07] Stan Blum. Stan Blum, personal communication. Personal Communication,

January 2007. 46

[BMPSB99] Ronald J. Brachman, Deborah L. McGuinness, Peter F. Patel-Schneider, and

Alexander Borgida. Reducing CLASSIC to practice: knowledge representation

theory meets reality. Artificial Intelligence, 114(1-2):203–237, 1999. 143

[BMS08] Shawn Bowers, Joshua Madin, and Mark Schildhauer. A conceptual modeling

framework for expressing observational data semantics. Conceptual Modeling

- ER 2008, pages 41–54, 2008. 106

[BMSZ03] Paolo Bouquet, B. Magnini, L. Serafini, and S. Zanobini. A SAT-based algo-

rithm for context matching. In IV International and Interdisciplinary Confer-

ence on Modeling and Using Context (CONTEXT’2003), Stanford University

(CA, USA), June 2003. 34

[BPB93] J. H. Beach, S. Pramanik, and J. H. Beaman. Hierarchic taxonomic databases.

In R. Fortuner, editor, Advances in Computer Methods for Systematic Biology:

161

Artificial Intelligence, Databases, Computer Vision, chapter 15, pages 241–

256. Johns Hopkins University Press, Baltimore, 1993. 35

[Bra83] R.J. Brachman. What IS-A is and isn’t: an analysis of taxonomic links in

semantic networks. IEEE Computer, 16:30–36, 1983. 8, 20, 101

[CdQ06] P. D. Cantino and K. de Queiroz. Phylocode: a phylogenetic code of biological

nomenclature. http://www.ohio.edu/phylocode/, 2006. 9

[CGL+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-

erini, and Riccardo Rosati. Tailoring OWL for data intensive ontologies. In

Proceedings of the OWL: Experiences and Directions Workshop, Galway, Ire-

land, 2005. 82

[Cha05] Arthur D. Chapman. Principles of data quality. Technical report, Global

Biodiversity Information Facility, Copenhagen, 2005. 102

[CHSR09] Andrew D. Cliff, Peter Haggett, and Matthew Smallman-Raynor. The chang-

ing shape of island epidemics: historical trends in icelandic infectious disease

waves, 1902-1988. Journal of Historical Geography, 35(3):545–567, 2009. 98

[Chu36] Alonzo Church. An unsolvable problem of elementary number theory. Amer-

ican Journal of Mathematics, 58:345–363, 1936. 37, 82

[Cle91] James F. Clement. Birds of the World: A Checklist. Ibis Publishing Co., 4th

edition, 1991. ix, 4

[Cle01] James F. Clement. Birds of the World: A Checklist. Ibis Publishing Co., 5th

edition, 2001. ix, 4

[Coo71] S. A. Cook. The complexity of theorem proving procedures. In Proceedings of

the Third Annual ACM Symposium, pages 151–158, New York, 1971. ACM.

82

162

[Dal88] Mukesh Dalal. Investigations into a theory of knowledge base revision. In

AAAI, pages 475–479, 1988. 154

[Dar04] Adnan Darwiche. New advances in compiling CNF into decomposable nega-

tion normal form. In Ramon López de Mántaras and Lorenza Saitta, editors,

ECAI, pages 328–332. IOS Press, 2004. 120

[DHS05] Xi Deng, Volker Haarslev, and Nematollaah Shiri. A framework for explaining

reasoning in description logics. In Thomas Roth-Berghofer and Stefan Schulz,

editors, ExaCt, volume FS-05-04 of AAAI Technical Report, pages 55–61.

AAAI Press, 2005. 143, 144

[DLD+04] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon Y. Halevy, and Pedro

Domingos. iMAP: discovering complex mappings between database schemas.

In Gerhard Weikum, Arnd Christian König, and Stefan Deßloch, editors, SIG-

MOD Conference, pages 383–394. ACM, 2004. 143, 144

[DLNN97] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept

languages. Information and Computation, 134:1–58, 1997. 73

[DMQ05] D. Dou, D. McDermott, and P. Qi. Ontology translation on the semantic web.

In Journal on Data Semantics (JoDS), volume II, pages 35–57, 2005. 34, 83,

84, 85, 88, 92

[DP97] Adnan Darwiche and Judea Pearl. On the logic of iterated belief revision.

Artificial Intelligence, 89(1–2):1–29, January 1997. 153

[DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam-

bridge University Press, Cambridge, second edition, 2002. 15

[DR02] Hong Hai Do and Erhard Rahm. Coma - a system for flexible combination of

schema matching approaches. In VLDB, pages 610–621. Morgan Kaufmann,

2002. 11

163

[EFT94] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer,

second edition, 1994. 72, 174

[Ehr07] Marc Ehrig. Ontology Alignment: Bridging the Semantic Gap, volume 4 of

Semantic Web And Beyond Computing for Human Experience. Springer, 2007.

20, 23, 33, 35, 48

[Eis91] N. Eisinger. Completeness, Confluence, and Related Properties of Clause

Graph Resolution. Morgan Kaufmann, 1991. 144

[Euz04] J. Euzenat. State of the art on ontology alignment.

http://www.starlab.vub.ac.be/publications/kweb-223.pdf, 2004. 23, 33

[EV04] J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-

Lite. In R. López de Mántaras and L. Saitta, editors, Proceedings of the 16th

European Conference on Artificial Intelligence (ECAI-04), pages 333–337. IOS

Press, 2004. 74

[FKP03] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: getting

to the core. In PODS, pages 90–101. ACM, 2003. 121

[FKPT07] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan.

Quasi-inverses of schema mappings. In Leonid Libkin, editor, PODS, pages

123–132. ACM, 2007. 121, 125

[FPW07] Nico M. Franz, Robert K. Peet, and Alan S. Weakley. On the use of taxonomic

concepts in support of biodiversity research and taxonomy. In Quentin D.

Wheeler, editor, The New Taxonomy, Systematics Association Special Volume

Series 74, pages 61–84. Taylor and Francis, Boca Raton, FL., 2007. 41, 83

[GB03a] M. Geoffroy and W. G. Berendsohn. The concept problem in taxonomy:

importance, compontents, approaches. [Ber03], pages 5–14. 41

164

[GB03b] Marc Geoffroy and Walter G. Berendsohn. Transmission of taxon-related

factual information. [Ber03], pages 83–86. 150

[GBM07] R. Grutter and B. Bauer-Messmer. Towards spatial reasoning in the semantic

web: a hybrid knowledge representation system architecture. In Lecture Notes

in Geoinformation and Cartography, Berlin, Heidelberg, 2007. Springer. 75

[Gen01] Wolfgang Gentzsch. Sun Grid Engine: towards creating a compute power

grid. In CCGRID, pages 35–39. IEEE Computer Society, 2001. 81

[Ger96] Michael Gertz. An extensible framework for repairing constraint violations.

In Workshop on Foundations of Models and Languages for Data and Objects,

pages 41–56, 1996. 149

[GG03] M. Geoffroy and A. Güntsch. Assembling and navigating the potential taxon

graph. [Ber03], pages 71–82. 36

[GGZ03] Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logical framework

for querying and repairing inconsistent databases. IEEE Transactions on

Knowledge and Data Engineering, 15(6):1389–1408, 2003. 149

[Goo61] I. J. Good. A causal calculus. British Journal of the Philosophy of Science,

11:305–318, 1961. 150

[gra] Graphviz. http://www.graphviz.org/. 146

[GSY04] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: an algorithm and

an implementation of semantic matching. In Proc. of the First European

Semantic Web Symposium - ESWS, pages 61–75, 10-12 May 2004. 34, 76

[gvi] Gvizify Python script to convert Prover9 proofs to dot format.

http://www.dwheeler.com/formal methods/gvizify. 147

165

[GW99] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical

Foundations. Springer, Heidelberg, 1999. 9

[GW02] Nicola Guarino and Christopher A. Welty. Evaluating ontological decisions

with OntoClean. Communications of the ACM, 45(2):61–65, 2002. 20

[GYS07] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Semantic match-

ing: Algorithms and implementation. J. Data Semantics, 9:1–38, 2007. 11

[Har01] Sven Hartmann. Coping with inconsistent constraint specifications. In

Hideko S. Kunii, Sushil Jajodia, and Arne Sølvberg, editors, ER, volume

2224 of Lecture Notes in Computer Science, pages 241–255. Springer, 2001.

149

[Hor07] Ian Horrocks. Ian Horricks, personal communication. Personal Communica-

tion, November 2007. 75

[HvHH+05] Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stuckenschmidt,

and York Sure. A framework for handling inconsistency in changing ontologies.

In Proceedings of the Fourth International Semantic Web Conference, pages

353–367, 2005. 149, 150

[IR88] Y. E. Ioannidis and R. Ramakrishnan. An efficient transitive closure al-

gorithm. In Proceedings of the 14th International Conference Very Large

Databases, pages 382–394, Los Angeles, California, August 1988. 94

[JD97] Peter Jonsson and Thomas Drakengren. A complete classification of tractabil-

ity in RCC-5. Journal of Artificial Intelligence Research, 6:211–221, 1997. 40,

78, 82

[Jon02] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised

Report. http://haskell.org/, September 2002. 138

166

[Kar04] John T. Kartesz. Synthesis of North American flora. BONAP, North Carolina

Botanical Garden, 2004. 49

[kep] Kepler: A system for scientific workflows. http://kepler-project.org. 133

[KG05] Yarden Katz and Bernardo Cuenca Grau. B.C.: representing qualitative spa-

tial information in OWL-DL. In In: Proceedings of OWL: Experiences and

Directions, 2005. 74, 75

[KJH+05] Jaehong Kim, Minsu Jang, Young-Guk Ha, Joo-Chan Sohn, and Sang-Jo Lee.

MoA: OWL ontology merging and alignment tool for the semantic web. In

Moonis Ali and Floriana Esposito, editors, Proceedings of the International

Conference on Industrial and Engineering Applications of Artificial Intelli-

gence and Expert Systems, IEA/AIE, volume 3533 of Lecture Notes in Com-

puter Science, pages 722–731. Springer, 2005. 74, 84

[KKP05] J. Kennedy, R. Kukla, and T. Paterson. Scientific names are ambiguous as

identifiers for biological taxa: their context and definition are required for

accurate data integration. In International Workshop on Data Integration in

the Life Sciences (DILS), LNCS 3615, pages 80–95, July 2005. 2

[KM91] Hirofumi Katsuno and Alberto O. Mendelzon. On the difference between

updating a knowledge base and revising it. In KR, pages 387–394, 1991. 153

[Kor08] K. Korovin. iProver – an instantiation-based theorem prover for first-order

logic (system description). In A. Armando, P. Baumgartner, and G. Dowek,

editors, IJCAR 2008, pages 292–298. Springer, 2008. 80, 120

[KS03] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art.

Knowledge Engineering Review Journal, 18(1):1–31, 2003. 33

167

[KSBG00] M. Koperski, M. Sauer, W. Braun, and S.R. Gradstein. Referenzliste der

Moose Deutschlands, volume 34. Schriftenreihe für Vegetationskunde, 2000.

83

[KV04] Konstantinos Kotis and George A. Vouros. The HCONE approach to ontology

merging. In Christoph Bussler, John Davies, Dieter Fensel, and Rudi Studer,

editors, Proceedings of the First European Semantic Web Symposium, volume

3053 of Lecture Notes in Computer Science, pages 137–151. Springer, 2004.

83

[KVS06] Konstantinos Kotis, George A. Vouros, and Konstantinos Stergiou. Towards

automatic merging of domain ontologies: the HCONE-merge approach. Jour-

nal of Web Semantics, 4(1):60–79, 2006. 83

[LAB+06] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,

Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific workflow

management and the kepler system. Concurrency and Computation: Practice

and Experience, 18(10):1039–1065, 2006. 4, 134

[LB87] H. J. Levesque and R. J. Brachman. Expressiveness and tractability in knowl-

edge representation and reasoning. Computational Intelligence Journal, 3:78–

93, 1987. 73

[Len02] Maurizio Lenzerini. Data integration: a theoretical perspective. In Proceedings

of the 21st ACM SIGMOD-SIGART Symposium on Principles of Database,

2002. 127

[LL59] C.I. Lewis and C.H. Langford. Symbolic Logic. New York: Dover, 2nd edition,

1959. 103

[MB95] Deborah L. McGuinness and Alexander Borgida. Explaining subsumption in

description logics. In IJCAI (1), pages 816–821, 1995. 143, 144

168

[McD98] Daniel McDermott. PDDL - the planning domain definition language. Tech-

nical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational

Vision and Control, 1998. 34

[McG96] Deborah L. McGuinness. Explaining Reasoning in Description Logics. PhD

thesis, Rutgers, State University of New Jersey, 1996. 143, 144

[MD02] Drew V. McDermott and Dejing Dou. Representing disjunction and quanti-

fiers in RDF. In Ian Horrocks and James A. Hendler, editors, International

Semantic Web Conference, volume 2342 of Lecture Notes in Computer Sci-

ence, pages 250–263. Springer, 2002. 34

[MFRW00a] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for

merging and testing large ontologies. In ECAI-04, Breckenridge, Colorado,

April 2000. 85, 128

[MFRW00b] Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder. The

Chimaera ontology environment. In Proceedings of the 17th National Con-

ference on Artificial Intelligence, pages 1123–1124. AAAI Press / The MIT

Press, 2000. 85

[MHH+01] Renée J. Miller, Mauricio A. Hernández, Laura M. Haas, Ling-Ling Yan,

C. T. Howard Ho, Ronald Fagin, and Lucian Popa. The Clio project: man-

aging heterogeneity. SIGMOD Record, 30(1):78–83, 2001. 12, 33

[MT99] Enric Mayol and Ernest Teniente. A survey of current methods for integrity

constraint maintenance and view updating. In Peter P. Chen, David W.

Embley, Jacques Kouloumdjian, Stephen W. Liddle, and John F. Roddick,

editors, ER (Workshops), volume 1727 of Lecture Notes in Computer Science,

pages 62–73. Springer, 1999. 149

169

[MW82] David Makowski and Rolf M. Wulfsberg. An improved taxonomy of postsec-

ndary institutions. Technical report, National Center for Higher Education

Management Systems, P.O. Drawer P, Boulder Colorad 80302, 1982. 2

[MWJ99] P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic integration of

knowledge sources. In Proceedings of the 2nd International Conference On

Information FUSION’99, 1999. 22

[MWK00] Prasenjit Mitra, Gio Wiederhold, and Martin Kersten. A graph-oriented

model for articulation of ontology interdependencies. Lecture Notes in Com-

puter Science, 1777:86–100, 2000. 22, 47

[Neb95] Bernhard Nebel. Computational properties of qualitative spatial reasoning:

first results. In Ipke Wachsmuth, Claus-Rainer Rollinger, and Wilfried Brauer,

editors, KI, volume 981 of Lecture Notes in Computer Science, pages 233–244.

Springer, 1995. 82

[NM00] Natalya Fridman Noy and Mark A. Musen. PROMPT: algorithm and tool for

automated ontology merging and alignment. In AAAI/IAAI, pages 450–455,

2000. 128

[NM03] Natalya F. Noy and Mark A. Musen. The PROMPT suite: interactive tools for

ontology merging and mapping. International Journal of Human-Computer

Studies, 59(6):983–1024, 2003. 11, 33, 83, 85, 88

[Pee05] Robert K. Peet. Taxonomic concept mappings for 9 taxonomies of the genus

Ranunculus published from 1948 to 2004. Unpublished dataset., June 2005.

1, 48, 121

[PTS06] Duc Pham, John Thornton, and Abdul Sattar. Towards an efficient SAT

encoding for temporal reasoning. Principles and Practice of Constraint Pro-

gramming - CP 2006, pages 421–436, 2006. 76

170

[PTU03] Luigi Palopoli, Giorgio Terracina, and Domenico Ursino. Dike: a system sup-

porting the semi-automatic construction of cooperative information systems

from heterogeneous databases. Software: Practice and Experience, 33(9):847–

884, 2003. 35

[que03] Map LC (LCC) to Dewey (DDC) classification, 2003. 2

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic

schema matching. VLDB Journal, 10(4):334–350, 2001. 33

[RCC92] David A. Randell, Zhan Cui, and Anthony Cohn. A spatial logic based

on regions and connection. In Bernhard Nebel, Charles Rich, and William

Swartout, editors, KR’92, pages 165–176. Morgan Kaufmann, San Mateo,

California, 1992. 40

[RN99] Jochen Renz and Bernhard Nebel. On the complexity of qualitative spatial

reasoning: a maximal tractable fragment of the region connection calculus.

Artificial Intelligence, 108(1-2):69–123, 1999. 78

[RV02] Alexandre Riazanov and Andrei Voronkov. The design and implementation

of VAMPIRE. AI Communications, 15(2-3):91–110, 2002. 82

[SDA+75] E.H. Shortliffe, R. Davis, S.G. Axline, B.G. Buchanan, C.C. Green, and

S.N. Cohen. Computer-based consultations in clinical therapeutics: expla-

nation and rule acquisition capabilities of the MYCIN system. Computers

and Biomedical Research, 8:303–320, 1975. 143

[SE07] Pavel Shvaido and Jérôme Euzenat. Ontology Matching. Springer, Heidelberg,

2007. 33

[SH05] Stefan Schlobach and Zhisheng Huang. Inconsistent ontology diagnosis:

framework and prototype. Technical report, 2005. 150

171

[SM01a] G. Stumme and A. Maedche. FCA-MERGE: bottom-up merging of ontolo-

gies. In Proceedings of the 17th International Joint Conference on Artificial

Intelligence, pages 225–234, 2001. 11, 84

[SM01b] G. Stumme and A. Maedche. Ontology merging for federated ontologies on the

semantic web. In Proceedings of the International Workshop for Foundations

of Models for Information Integration (FMII-2001), pages 413–418, 2001. 83,

128

[SS09] Markus Stocker and Evren Sirin. Pelletspatial: a hybrid RCC-8 and RD-

F/OWL reasoning and query engine. In Rinke Hoekstra and Peter F. Patel-

Schneider, editors, Proceedings of OWL:Experiences and Directions, 2009. 75

[SSS91] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with

complements. Artificial Intelligence, 1(48):1–26, 1991. 73, 74

[SSW05] H. Stuckenschmidt, L. Serafini, and H. Wache. Reasoning about ontology

mappings. Technical report, ITC-IRST, Trento, 2005. 33

[ST05] Luciano Serafini and Andrei Tamilin. DRAGO: distributed reasoning archi-

tecture for the semantic web. In Asunción Gómez-Pérez and Jérôme Euzenat,

editors, ESWC, volume 3532 of Lecture Notes in Computer Science, pages

361–376. Springer, 2005. 11, 33

[TBL08] David Thau, Shawn Bowers, and Bertram Ludäscher. Merging taxonomies

under RCC-5 algebraic articulations. In CIKM Workshop on Ontologies and

Information Systems for the Semantic Web (ONISW), pages 47–54. ACM,

2008. 83, 155

[TBL09a] David Thau, Shawn Bowers, and Bertram Ludäscher. Cleantax: a frame-

work for reasoning about taxonomies. In Proceedings of the AAAI Spring

Symposium, pages 49–50, 2009. 63

172

[TBL09b] David Thau, Shawn Bowers, and Bertram Ludäscher. Merging sets of tax-

onomically organized data using concept mappings under uncertainty. In

Robert Meersman, Tharam S. Dillon, and Pilar Herrero, editors, OTM Con-

ferences, volume 5871 of Lecture Notes in Computer Science, pages 1103–1120.

Springer, 2009. 83, 98, 155

[TBL10] David Thau, Shawn Bowers, and Bertram Ludäscher. Towards best-effort

merge of taxonomically organized data. In Proceedings of the 2nd International

Workshop on New Trends in Information Integration (in conjunction with

ICDE), 2010. 98

[TCS] The taxonomic concept schema. http://tdwg.napier.ac.uk/. 35, 40, 41, 48

[tdw] Taxonomic data working group. http://www.tdwg.org/. 35, 40

[Tha08] David Thau. Reasoning about taxonomies and articulations. In Ph.D. ’08:

Proceedings of the 2008 EDBT Ph.D. workshop, pages 11–19, New York, NY,

USA, 2008. ACM. 33, 63

[TL07] David Thau and Bertram Ludäscher. Reasoning about taxonomies in first-

order logic. Ecological Informatics, 2(3):195–209, 2007. 33

[Tur36] Alan Turing. On computable numbers, with an application to the entschei-

dungsproblem. In Procedings of the London Mathematical Society, volume 42

of 2, pages 230–265, 1936. 37, 82

[VMP05] Pascal Vasseur, El Mustapha Mouaddib, and Claude Pégard. Introduction to

multisensor data fusion. In Richard Zurawski, editor, The Industrial Infor-

mation Technology Handbook, pages 1–10. CRC Press, 2005. 128

[wik07] Comparison of dewey and library of congress subject classification, November

2007. 2

173

[W.W08] W.W.McCune. Prover 9: http://www.cs.unm.edu/ mccune/prover9/, July

2008. 56

[WW09] Matthias Westphal and Stefan Wölfl. Qualitative CSP, finite CSP, and SAT:

comparing methods for qualitative constraint-based reasoning. In Proceedings

of the 21st International Joint Conference on Artificial Intelligence, pages

628–633, 2009. 77

[WWG09] Matthias Westphal, Stefan Wölfl, and Zeno Gantner. GQR: a fast solver

for binary qualitative constraint networks. In AAAI Spring Symposium on

Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, 2009.

77, 80

[xbr] eXtensible Business Reporting Language. http://www.xbrl.org/. 7

[Zad65] Lofti A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965. 150

174

Appendix A

Formal Languages and Proofs

A.1 Formal Languages

A.1.1 First-Order Logic (FOL)

For ease of reference, we summarize basic notions from first-order predicate logic [EFT94].

Syntax. The language LFOL of first-order logic is built from an alphabet consisting of

(i) a set of variables V = {x, y, z, . . . }, (ii) connectives ¬,∧,∨,→,↔ (not, and, or, if-

then, if-and-only-if), (iii) quantifiers ∀, ∃ (for all and there exists), and (iv) a signature

S = R ∪ F ∪ C, involving sets of relation symbols R (R1, R2, . . .), function symbols F

(f1, f2, . . .), and constants C (c1, c2, . . .). Each R ∈ R and f ∈ F has a unique arity ≥ 1.

The set T of terms is the least set such that (i) V,C ⊆ T (constants and variables are

terms), and (ii) for every k-ary f ∈ F and t1, . . . , tk ∈ T, also f(t1, . . . , tk) ∈ T.

A LFOL formula is either an atomic formula R(t1, . . . , tk), with k-ary R ∈ R and

t1, . . . , tk ∈ T, or of the form (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ), (¬ϕ), ∀x(ϕ), or ∃x(ϕ),

where ϕ,ψ are LFOL formulas, and x ∈ V. Parentheses may be omitted when clear from

the context.

175

Semantics. Fix a signature S = R ∪ F ∪ C. A first-order structure I = (D, I) for S

consists of a domain D and a mapping I, assigning to every constant c ∈ C, k-ary function

symbol f ∈ F, and k-ary relation symbol R ∈ R, a domain element cI , a k-ary function

f I : Dk → D, and a k-ary relation RI ⊆ Dk, respectively. Since I interprets (i.e., assigns

meaning to) all symbols in S, terms and formulas over S can be evaluated under I, provided

we also map free variables to domain elements via a variable assignment β : V → D. Let

I = (I, β) be an interpretation, i.e., a first-order structure I with variable assignment β.

Formula evaluation is defined inductively as a satisfaction relation I |= ϕ (“I satisfies ϕ”,

“I is a model of ϕ”, “ϕ holds in I”):1

I |= R(t1, . . . , tn) :iff (I(t1), . . . ,I(tn)) ∈ RI

I |= ¬ϕ :iff not I |= ϕ

I |= ϕ ∧ ψ :iff I |= ϕ and I |= ψ

I |= ϕ ∨ ψ :iff I |= ϕ or I |= ψ

I |= ϕ→ ψ :iff I |= ϕ implies I |= ψ

I |= ϕ↔ ψ :iff I |= ϕ if and only if I |= ψ

I |= ∀x(ϕ) :iff I |= ϕ for all d ∈ D holds I dx |= ϕ

I |= ∃x(ϕ) :iff I |= ϕ there exists d ∈ D such that I dx |= ϕ

These abstract notions become more tangible when recast in database terminology: A

formula ϕ(x1, . . . , xn) over S with free variables2 x1, . . . , xn defines an n-ary query q over

the schema S. In particular, checking for which tuples (c1, . . . , cn) we have I |= ϕ(c1, . . . , cn)

is exactly the same as running the query q against the database instance I, i.e., q(I) =

{ (c1, . . . , cn) | I |= ϕ(c1, . . . , cn) }. Here, we use I instead of I, since all free variables xi

of ϕ have been substituted by constants ci (so β is not needed).
1As usual, ‘iff’ means ‘if and only if’. The colon ‘:’ indicates that the left-hand side is defined by the

right-hand side. I d
x

is the same as I, but β is modified to map x to d, i.e., β(x) := d.
2An occurrence of a variable x in ϕ is free if it is not under the scope of a quantifier ∀x(· · ·) or ∃x(· · ·);

else it is called bound.

176

A formula ϕ without free variables is called a sentence or constraint, and corresponds

to a yes/no (boolean) query. Let Φ be a set of constraints. We write I |= Φ, if I |= ϕ for

all ϕ ∈ Φ and say “I is a model of Φ”. We write Φ |= ϕ if every model of Φ is also a model

of ϕ, i.e., ϕ is a (logical) consequence of Φ.3

A.1.2 The Syntax and Semantics of Monadic First-Order Logic

Syntax. The language of monadic first-order logic is built from an alphabet consisting

of (i) a set of variables V = {x, y, z, . . . }, (ii) connectives ¬,∧,∨,→,↔ (not, and, or, if-

then, if-and-only-if), (iii) quantifiers ∀,∃ (for all and there exists), and (iv) a signature,

S = R ∪C, involving sets of relation symbols R and constants C.

A LMFOL formula is either an atomic formula R(t), where t is either a variable or

constant, or of the form (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ), (¬ϕ), ∀x: ϕ, or ∃x: ϕ, where

ϕ,ψ are LMFOL formulas, and x is a variable.

Semantics. Fix a signature S = R ∪C. A first-order structure I = (D, I) for S consists

of a domain D and a mapping I, assigning to every constant c ∈ C and unary relation

symbol R ∈ R, a domain element cI , and a unary relation RI ⊆ D, respectively.

Since I interprets (i.e., assigns meaning to) all symbols in S, terms and formulas over

S can be evaluated under I, provided we also map free variables to domain elements via

a variable assignment β : V → D. Let I = (I, β) be an interpretation, i.e., a first-order

structure I with variable assignment β. Formula evaluation is defined inductively as a
3Note the difference between I |= ϕ and Φ |= ϕ: the former is the satisfaction relation between a

structure (database instance) I and a formula (query) ϕ; the latter is the consequence relation, stating that
all structures I which satisfy Φ, also satisfy ϕ. Thus, I |= ϕ is also called formula evaluation (given I),
while the Φ |= ϕ involves “reasoning” (independent of I).

177

satisfaction relation I |= ϕ (“I satisfies ϕ”, “I is a model of ϕ”, “ϕ holds in I”):4

I |= R(t) :iff I(t) ∈ RI

I |= ¬ϕ :iff not I |= ϕ

I |= ϕ ∧ ψ :iff I |= ϕ and I |= ψ

I |= ϕ ∨ ψ :iff I |= ϕ or I |= ψ

I |= ϕ→ ψ :iff I |= ϕ implies I |= ψ

I |= ϕ↔ ψ :iff I |= ϕ if and only if I |= ψ

I |= ∀x(ϕ) :iff I |= ϕ for all d ∈ D holds I dx |= ϕ

I |= ∃x(ϕ) :iff I |= ϕ there exists d ∈ D such that I dx |= ϕ

An interpretation I maps the symbols in a signature S = R∪C to relations and objects

in a modeled “real world.” A formula ϕ without free variables is called a constraint and

corresponds to a yes/no (boolean) query. We use Φ to represent a set of such constraints.

If an interpretation makes true all constraints in Φ, we write I |= Φ, and say “I satisfies

(or is a model of) Φ”. If a formula ϕ is a logical consequence of a set of constraints5 Φ, we

write Φ |= ϕ. See Example 4.1 in Section 4.3.1 for a concrete example of interpretations

and constraints.

A.1.3 The Syntax and Semantics of AL

The following definitions of the syntax and semantics of AL come mainly from [BCM+03].

Syntax. Concepts in AL are formed according to this rule:

C, D →
A | (atomic concept)

4As usual, ‘iff’ means ‘if and only if’. The colon ‘:’ indicates that the left-hand side is defined by the
right-hand side. I d

x
is the same as I, but β is modified to map x to d, i.e., β(x) := d.

5ϕ is a logical consequence of Φ if every model of Φ is also a model of ϕ

178

> | (universal concept)

⊥ | (bottom concept)

¬A | (atomic negation)

C uD | (intersection)

∀R.C | (value restriction)

∃R.> | (limited existential quantification)

Semantics. Interpretations I in AL consist of a non-empty set U (the domain of the

interpretation) and an interpretation function, which assigns to every atomic concept A

a set AI ⊆ UI and to every atomic role R a binary relation RI ⊆ UI × UI . Concept

descriptions are interpreted inductively as follows:

>I = UI

⊥I = Ø

(¬A)I = UI \AI

(C uD)I = CI ∩DI

(∀R.C)I = {a ∈ UI | ∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.>)I = {a ∈ UI | ∃b.(a, b) ∈ RI}

A.2 The Maximal Tractable Subalgebra R28
5

Table A.1 describes the 32 R32relations, and the R28
5 subset which leads to polynomial time

reasoning.

A.3 Implementation Details

A.3.1 The CleanTax Input File

Example A.1. taxonomy b48 Benson 1948

179

R32 Relations R28
5

{ } •
{ ! } •
{⊕} •
{ !, ⊕} •
{(} •
{ !, (} •
{⊕, (} •
{ !, ⊕, (} •
{) } •
{ !,) } •
{⊕,) } •
{ !, ⊕,) } •
{(,) }
{ !, (,) }
{⊕, (,) } •
{ !, ⊕, (,) } •

R32 Relations R28
5

{≡} •
{ !, ≡} •
{⊕, ≡} •
{ !, ⊕, ≡} •
{(, ≡} •
{ !, (, ≡} •
{⊕, (, ≡} •
{ !, ⊕, (, ≡} •
{), ≡} •
{ !,), ≡} •
{⊕,), ≡} •
{ !, ⊕,), ≡} •
{(,), ≡}
{ !, (,), ≡}
{⊕, (,), ≡} •
{ !, ⊕, (,), ≡} •

Table A.1: The maximal tractable subalgebra R28
5 : only relations marked “•” are in R28

5 .

(a b c)

taxonomy k04 Kartesz 2004

(a b c)

articulation p05 Peet 2005

[b48_a equals k04_a]

[b48_b equals k04_b]

[b48_c equals k04_c]

goal

<possible ? b48_a equals k04_c>

180

A taxaLogic input file is divided into sections with tree types of headers: taxonomy,

articulation, and goal. The taxonomy and articulation headers are followed by an “au-

thority”, which is a string with no spaces. Any characters after the authority (excluding

intervening spaces) are considered a “full name” of the authority. This is optional. In the

example above, the first taxonomy has authority b48, the “full name” of which is “Benson

1948.” Full names can have any alphanumeric characters and are for output formatting

purposes.

There may be multiple of each kind of header. If there are multiple taxonomy or

articulation headers, each must have a different authority string. There must be at least

one taxonomy header. Case matters in the file. Blank lines are optional. The order of the

sections is not mandatory, except that a node and authority must be declared before it is

used in an articulation or a goal. It is traditional to declare the taxonomies first, followed

by the articulations, and then a goal, if one exists.

Below each header, on the next line, is the information about that header. Each type

of header has a different sort of information with a different format.

Taxonomy headers. Each line after a taxonomy header, and until the next header

appears, contains information about a taxonomy. Each line represents a single node and its

immediate children. The name of each node must have no spaces, underscores, or dashes.

The nodes are not prepended with any authority information. A line under the taxonomy

header looks like:

(parent child1 child2 child3 . . . childn)

Note the parentheses around the entire line. As mentioned above, the first node is the

parent, and every node after that is a child of the parent.

Articulation header. Each line in an articulation section is one articulation between

two nodes. The format of the line is

[authority1 node1 relations authority2 node2]

181

Note the square brackets around everything in the line. The first and third terms are

nodes named in the taxonomy section, prepended with their respective authorities, with

an underscore between the authority string and the node string. The authority and node

strings must have been declared in a prior taxonomy section.

There are five relations: equals, includes, is included in, disjoint, overlaps.

If only one relation holds between the two nodes, it can be listed without further em-

bellishment:

[b48 a equals k04 a]

If multiple relations may hold, those relations may appear in a space-separated list

within curly braces:

[b48 a {equals overlaps} k04 a]

This signifies that either an equals or an overlaps relation holds between these two

nodes. If the relation is completely unknown, then all the relations appear in the curly

braces.

The relations may also be bounded by asterisks:

[b48 a ∗ {equals overlaps} ∗ k04 a] or [b48 a ∗ equals ∗ k04 a]

This signifies that the relations were inferred by the CleanTax system rather than

given by a curator. This is useful for displaying the results of a CleanTax run.

The goal header. Each line in a goal section contains a single goal. There are two types

of goals: implies and possible. The “implies” goal tests to see if a given relationship between

two nodes is a consequence of the taxonomies, articulations, and any additional rules that

may be added at some point. The “possible” goal checks to see if the relationship being

tested might possibly be true, or in other words, checks that it is not impossible that the

relation holds. Each goal line appears between < > signs:

< possible ? b48 a equals k04 c >

The first word is the type of goal, possible or implied, followed by a question mark,

and then the relationship being tested. As in the articulation section, if a number of

182

relationships are of interest, they may be placed in a space separated list between curly

braces:

< possible ? b48 a {equals includes} k04 c >

This checks to see if it is possible that either the equals and includes relationships holds

between the two nodes.

The Extended Backus-Naur form for the CTI File appears in Figure A.1.

A.3.2 Output Formats

Main report

The main report displays the following information: Whether or not each taxonomy +

articulation + set of GTC is consistent. For any two nodes, and any R32 relation, whether

or not that relation holds. Links to the input and output of the reasoners. Links to a

graphical representation of the taxonomies and articulations with discovered articulations.

The columns of the output and the table are (examples in parentheses):

• the name of the run (k04 b48 Ranunculus petiolaris)

• the short name of the first taxonomy (k04)

• the short name of the second taxonomy (b48)

• the GTC used for the run (NonEmptiness Coverage DisjointChildren)

• the type of run (consistency or implied or possible)

• whether the relation was given or inferred (given or inferred)

• the name of node 1 (buttercup10517)

• the name of node 2 (buttercup10222)

• the relation being tested (equals includes disjoint)

• the outcome (true, false, unclear)

183

taxaLogicInput = taxonomy-section, [{taxonomy-section}],
[{articulation-section}], [{goal-section}];

taxonomy-section = taxonomy-header, <EOL>, [{node-descriptor}];
taxonomy-header = ’taxonomy’, white-space, authority, white-space, phrase,

<EOL>;
node-descriptor = ’(’, node, white-space, [{node | white-space}], ’)’,

<EOL>;
articulation-section = articulation-header, <EOL>,

[{articulation-descriptor}];
articulation-header = ’articulation’, white-space, authority, white-space,

phrase, <EOL>;
articulation-descriptor = ’[’, articulation, ’]’, <EOL>;
articuliation = authority, ’_’, node, white-space, relation-string,

white-space, authority, ’_’, node;
relation-string = relation | ’{’, {relation | white-space}, ’}’;
relation = ’equals’ | ’includes’ | ’is_included_in’ | ’disjoint’ |

’overlaps’;
goal-section = goal-header, <EOL>, [{goal-descriptor}];
goal-header = ’goal’;
goal-descriptor = ’<’,goal-type, white-space, ’?’, white-space,

articulation, ’>’, <EOL>;
goal-type = ’implied’ | ’possible’
node = word;
authority = word;
white-space = {? white space characters ?};
word-letter = alphanumeric - (’_’,’-’, ? white space characters ?);
word = word-letter, [{word-letter}];
phrase = word, [{" " | word}];

Figure A.1: The Extended Backus-Naur form for the CTI File

184

• the name of, or a link to, the prover9 input file

• the name of, or a link to, the prover9 output file

• the name of, or a link to, the mace4 input file

• the name of, or a link to, the mace4 output file

Timing report

The outputs of reasoner files often contain information about the proofs and how long they

took. The timing report lists, for each reasoner, for each proof, a single line of statistics.

This report currently has only been created for prover9.

The report is currently generated by a Perl script named p9StatsSummary.pl. It takes

as input the output of a Prover9 run.

The output columns are:

• run name

• node 1

• node 2

• relationship

• user time

• system time

• wall time

• proof steps

185

Maximally Informative Relation

Many relations will hold between any two nodes. For example, if a equals b, then a {equals

includes} b. There will be one distinguished maximally informative relation which is true

and implies the truth of all the other true relations. This report determines the maximally

informative relation for each pair of nodes.

The report is generated by a Perl script named findMaxInfNode.pl. It takes as input a

tab-delimited output file from CleanTax and outputs a report with one row per implication

test.

Its columns are:

• run name

• gtc

• node 1

• node 2

• maximally informative relation

R32 Lattice

The R32 Lattice tracks how often each relation is true in a given run. There are three

interesting numbers for each relation in the lattice: the number of times it was true, the

number of times it was the maximally informative relation, and the number of times the

relation was inferred to be true if a relation-test reducing optimization is performed.

This report is currently generated with a Perl script named inferLattice.pl. This script

takes as input a tab delimited output file from CleanTax and outputs a report with a row

for each relation; the columns are:

• a number representing the relation

• the relation

186

• the number of times the relation was determined to be true by the reasoners

• the number of times the relation was true according to the optimization

• the number of times the relation was the maximally informative relation

Generating a R32 Lattice for GraphViz

The R32 lattice can be visualized in GraphViz. Currently, a Perl script named relLattice-

DoThreeVals.pl takes a file output by the R32 Lattice report and outputs a dot file which

can be processed by GraphViz.

Generating a tab-delimited report from an HTML report

CleanTax can output a tab-delimited text file or an HTML table. If the output of a run

is in HTML form, it can be converted to a tab-delimited file using a Perl script named

tlo2csv.pl. This script is useful for creating files that may be consumed by the other report

scripts described here.

A.3.3 CleanTax Command-Line Options

CleanTax supports the following options, those with asterisks are not yet implemented :

General options

• -r : root directory

• -o : output file - if left out, goes to stdout

• -p : program directory - where the reasoners live

• -m : directory to store intermediate files

• -T : reasoner timeout in seconds

187

Input options

CTI Input Options

• -i : input single CTI file

• -d : input directory of CTI files

Reasoner input options

• -D : input directory of reasoner input files

• -I : input single reasoner file

TCS schema input options

• -x : xml file to parse into CTI files

• -s : species in the XML file, either a single species or a csv string

• -t : a list of authority/abbreviation tuples (e.g., “[(’Kartesz 2004’,’k04’),(’Benson

1948’,’b48’)”)

Program output options

• -h : HTML table output

NOTE: One of -i, -d, or -x must be specified.

Latent taxonomic assumption options

Unless otherwise specified, no GTCs will be applied.

• -l : a csv string of GTCs to apply, for example:“n,nc,ncd,cd,none” will run GTC sets

[non-empty], [non-empty and coverage], [non-empty, coverage, and sibling disjoint-

ness], [coverage and sibling disjointness], and no GTCs

• -v : a csv list of single GTCs, and run the power set. For example “n,c,d” will run

the power set “n,c,d,nc,nd,cd,ncd and none”

188

Goal options

• -n : nodes to test, either“all”: compare all pairwise nodes, or a set of tuples to test

“(a,d) (b,e) (c,f)”, * or two csv lists, one for T1 and one for T2 “a,b,c d,e,f”,

• -c : relations to test - this is a csv list, such as: “equals,{overlaps equals},overlaps,is included in”

• -a : a power set of relations given in a csv list

• -w : test types, either “all”, or a comma delimited string composed of consistent,

implied and/or possible (e.g., “consistent,implied”. If excluded, no goals are tested

(only consistency of axioms).

A.4 Proofs

In the following we include several formal, automated proofs mentioned in the dissertation.

We used two automatic reasoners: Prover9 and Mace4.6 Prover9 is a resolution-based

first-order logic theorem prover. Thus, in order to prove Φ |= ϕ, i.e., that a formula ϕ

follows from a set of assumptions (or axioms) Φ, adds the negated formula ¬ϕ as a goal to

the assumptions, trying to refute the conjunction Φ∧¬ϕ, using (primarily) logic resolution

steps: Φ ∪ {¬ϕ} ` 2. Here, “2” stands for the empty clause, denoting False, and “`”

denotes the provability relation, based on the legal derivation rules steps of the reasoning

calculus at hand (e.g., first-order resolution). If indeed, False can be derived, it follows from

the correctness of the calculus that ϕ is a logical consequence of Φ.

If Prover9 fails to find a proof, this may be because (a) indeed ϕ is not a consequence

of Φ, or (b) it is, but Prover9 simply could not find it (given the limited time and

memory resources). One can then use the Mace4 tool to try and find models of Φ ∧ ¬ϕ,

i.e., interpretations I such that I |= (Φ∧¬ϕ) holds. When successful, I is in fact a counter

model for the desired theorem ϕ, demonstrating that all the assumptions Φ can be satisfied

while still falsifying ϕ.
6http://www.cs.unm.edu/~mccune/mace4/

http://www.cs.unm.edu/~mccune/mace4/

189

If Mace4 fails to find a model for Φ ∧ ¬ϕ after Prover9 also failed to show that

Φ∧¬ϕ is inconsistent, then one cannot discern between the cases (a) and (b). In general, this

situation can occur because the logical implication and satisfiability of FOL are undecidable

problems. However, these questions are decidable for Ltax and—in the case of using only

R28
5 constraints—even efficiently decidable in polynomial time.

Summarizing, Prover9 and Mace4 were used in tandem when searching for proofs or

for counter-models of Φ |= ϕ, respectively.

A.4.1 Automated Reasoning Examples for Figure 1.3

Figure 1.3 presented a number of questions about a pair of taxonomies and a mapping

between them. We examined the effects of each of our latent taxonomic assumptions: non-

emptiness, sibling disjointness, and coverage on each of the questions asked in the figure.

Given the three GTCs, there are eight possible GTC combinations (e.g., none of the GTCs,

all of the GTCs, just coverage and non-emptiness, etc.)

Figure 1.3c: Is C ⊆ E implied? We used Prover9 to find proofs for each of the com-

binations of possible GTCs. When the hypothesis could not be proven, we used Mace4 to

verify that there was a counter example. We found that the hypothesis could only be proven

if the coverage GTC was applied. The other GTCs had no effect on the outcome. Below is

the proof, in Prover9 syntax, with only the coverage GTC applied. The correspondence

between Prover9 syntax and the syntax in Table 4.2 should be clear.

2 c(x) -> a(x) Assumption

4 a(x) <-> d(x) Assumption

7 d(x) -> e(x) Assumption

8 c(x) -> e(x) Goal

12 c(c1) Deny 8

13 -c(x) | a(x) Clausify 2

15 -d(x) | e(x) Clausify 7

190

17 -e(c1) Deny 8

19 -a(x) | d(x) Clausify 4

20 a(c1) Resolve 12 13

21 d(c1) Resolve 20 19

22 -d(c1) Resolve 17 15

23 False Resolve 21 22

Figure 1.3d: Is C ≡ D possible? Here we used Mace4 to find models of the formulas

under various GTC combinations. Mace4 found models for all combinations of GTCs

unless non-emptiness and sibling disjointness were both assumed. Prover9 could not

prove that C ≡ D does not follow from the other formulas. However, the reason that

Mace4 could not find a model for this situation is clear when one looks at the figure: If

C ≡ D, then A, C, and D must be identical, i.e., contain the same elements. If B is

non-empty, and B and C are disjoint, then A must contain some element which is not in

C. That contradicts the statement that A and C are equivalent.

Figure 1.3e: Is A ≡ E possible? We again used Mace4 to find models that satisfy

this set of formulas under various combinations of GTCs. In this situation, the assertion is

indeed possible regardless of whether or not any GTCs are asserted.

A.4.2 Inconsistent Taxonomies and Mappings: Figure 4.5

The Prover9 theorem prover shows that the non-emptiness, sibling disjointness, and cov-

erage GTCs render the taxonomies and mappings in Figure 5 inconsistent. The proof posits

an instance of BRhn. It then reasons that the instance cannot be one of BRhs or BRht be-

cause of the sibling disjointness constraint. The equivalence articulations from these nodes

to their counterpart KRhs and KRht nodes imply that the instance of BRhn cannot be

an instance of either of these. Through the coverage constraint, the instance cannot be an

instance of KRh. Following the equivalence articulation to BRh means that the instance

191

cannot be in BRh. However, this leads to a contradiction because BRhn implies BRh.

1 BRhn(x) -> BRh(x) Assumption

6 BRh(x) <-> KRh(x) Assumption

7 BRhs(x) <-> KRhs(x) Assumption

8 BRht(x) <-> KRht(x) Assumption

10 (exists x (BRhn(x))) Assumption

16 BRhn(x) -> -BRhs(x) Assumption

17 BRhn(x) -> -BRht(x) Assumption

21 KRh(x) -> KRhs(x) | KRht(x) Assumption

22 BRhn(c2) Clausify 10

23 -BRhn(x) | BRh(x) Clausify 1

24 -BRhn(x) | -BRhs(x) Clausify 16

25 -BRhn(x) | -BRht(x) Clausify 17

27 BRhs(x) | -KRhs(x) Clausify 7

32 -BRhs(c2) Resolve 24 22

33 BRht(x) | -KRht(x) Clausify 8

37 -BRht(c2) Resolve 25 22

43 -KRh(x) | KRhs(x) | KRht(x) Clausify 21

46 -KRhs(c2) Resolve 32 27

53 -KRht(c2) Resolve 37 33

57 -KRh(c2) | KRht(c2) Resolve 46 43

60 -BRh(x) | KRh(x) Clausify 6

67 -KRh(c2) Resolve 57 53

69 BRh(c2) Resolve 22 23

79 -BRh(c2) Resolve 67 60

80 False Copy 79, unit_del 69

	Title
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Scenarios
	1.2.1 Data Integration
	1.2.2 Metadata Curation
	1.2.3 Taxonomy Merging
	1.2.4 Inference

	1.3 Domain Description
	1.4 Outstanding Problems
	1.5 Current Solutions
	1.6 Goals and Contributions
	1.7 Thesis Structure

	2 Preliminaries
	2.1 Notation
	2.2 Definitions
	2.2.1 Sets, Partial Orders, Lattices, and Power Sets
	2.2.2 Graphs and Trees
	2.2.3 Formal Languages

	3 Formal Modeling of the Domain
	3.1 Definitions
	3.2 Basic Operations
	3.3 Formalized Questions
	3.4 Contributions and Future Work

	4 Taxonomy Alignment
	4.1 Overview and Objectives
	4.1.1 Prior Work
	4.1.2 Goals and Outcomes

	4.2 Monadic First-Order Logic (MFOL)
	4.3 Formalizing Taxonomies as Monadic First-Order Logic Constraints
	4.3.1 Formalizing Hierarchical Constraints (isa)
	4.3.2 Formalizing LT: The Language of Taxonomic Constraints

	4.4 Formalizing Articulations as Monadic First-Order Logic Constraints
	4.5 Combining isa, LT, and LA into Ltax
	4.6 Applying the CleanTax Framework
	4.6.1 Small-Scale Applications of CleanTax
	4.6.2 A Large-Scale Application of CleanTax
	4.6.3 Modularization via Connected Subgraphs

	4.7 Contributions and Future Work

	5 Optimizations
	5.1 Overview and Objectives
	5.2 Reducing the Number of Proof Obligations
	5.2.1 GTC Lattice Optimization.
	5.2.2 R32 Lattice Optimizations
	5.2.3 R32 Lattice Optimization Results
	5.2.4 Summary of Lattice Optimizations

	5.3 Language Optimizations
	5.3.1 Expressive Power
	5.3.2 Complexity
	5.3.3 Description Logics
	5.3.4 Propositional Logic
	5.3.5 R528: A Tractable Subset of RCC-5
	5.3.6 Optimization Results

	5.4 Parallelization
	5.5 Contributions and Future Work

	6 Merging Taxonomies
	6.1 Overview and Objectives
	6.2 Related Work
	6.3 Desiderata
	6.3.1 Desiderata for Merge Results
	6.3.2 Desiderata for Merge Operations

	6.4 Taxonomy Merging in CleanTax
	6.5 Experiments and Discussion
	6.6 Comparison to Related Systems
	6.7 Conclusion

	7 Merging Taxonomically Classified Data
	7.1 Introduction
	7.2 Basic Approach
	7.3 Framework
	7.4 Merging Data Sets
	7.4.1 Merge Compatibility and Absence Closure
	7.4.2 The Naive Basic Relation Merge Algorithm
	7.4.3 General Basic Relation Merge (BRM-G)
	7.4.4 The Basic Relation Merge for Unambiguous Data Sets (BRM-U)
	7.4.5 Merging under Disjunctive Relation Uncertainty

	7.5 Evaluation
	7.6 Towards a Best-Effort Merge of Taxonomically Organized Data
	7.6.1 Introduction
	7.6.2 Approach
	7.6.3 Some Challenges for the Best-Effort Merge

	7.7 Related Work and Conclusion

	8 Implementations
	8.1 Overview and Objectives
	8.2 Features Common to All Implementations
	8.2.1 Input Formats
	8.2.2 Output Formats

	8.3 Python
	8.4 Workflows
	8.4.1 Rationale for Workflow Implementation
	8.4.2 Functional Representation of CleanTax
	8.4.3 Basic Entities
	8.4.4 List Types
	8.4.5 Complex Types

	8.5 Basic Operations
	8.6 Complex Operations
	8.7 Contributions and Future Work

	9 Possible Extensions: Explanations, Repairs, and Uncertainty
	9.1 Overview and Objectives
	9.2 Explanations
	9.2.1 Prior Work
	9.2.2 Requirements
	9.2.3 Initial Results
	9.2.4 Future Work

	9.3 Repairs
	9.3.1 Prior Work
	9.3.2 Future Work

	9.4 Uncertainty
	9.4.1 Uncertainty Metrics
	9.4.2 Reducing Uncertainty
	9.4.3 Using Dataset Merges to Guide Uncertainty Reduction
	9.4.4 Visualizations

	9.5 Additional Research and Development
	9.6 Conclusion

	Bibliography
	A Formal Languages and Proofs
	A.1 Formal Languages
	A.1.1 First-Order Logic (FOL)
	A.1.2 The Syntax and Semantics of Monadic First-Order Logic
	A.1.3 The Syntax and Semantics of AL

	A.2 The Maximal Tractable Subalgebra R528
	A.3 Implementation Details
	A.3.1 The CleanTax Input File
	A.3.2 Output Formats
	A.3.3 CleanTax Command-Line Options

	A.4 Proofs
	A.4.1 Automated Reasoning Examples for Figure 1.3
	A.4.2 Inconsistent Taxonomies and Mappings: Figure 4.5

