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1 Introduction

Similar to content on the web, scientific data is highly hegeneous and can ben-
efit from rich semantic descriptions. We are particularlieiasted in developing an
infrastructure for expressing explicit semantic des@im of ecological data (and life-
sciences data in general), and exploiting these desaripto provide support for au-
tomated data integration and transformation within sdienvorkflows [2]. Using se-
mantic descriptions, our goal is to provide scientists wit tools to easily search for
and retrieve datasets relevant to their study (i.e., gedeurement), (2) the ability to
select a subset of returned datasets as input to a scientifidlow, and (3) automated
integration and restructuring of the selected datasetsefamless workflow execution.
As part of this effort, we are developing ti@emantic Mediation System (SMS)
within the SEEK projed, which aims at combining knowledge representation and
semantic-web technologies (e.g., OWL and RDF) with trad#lalata-integration tech-
niques [3, 8, 9]. We observe that along with these traditiaparoaches, mediation of
ecological data also requires external, special-purpesgces for accessing informa-
tion not easily or conveniently expressed using concephaleling languages, such
as description logics. The following are two specific exagspf ecologically relevant,
external services that can be exploited for scientific-tra&gration and transformation.

Taxonomic Classification and Mapping There is an extensive body of knowledge
on species (both extinct and existing) represented in @&tyaadf different taxonomic
classifications, and new species are still being discovigiled he same species can be
denoted in many ways across different classifications, asdlving names of species
requires mappings across multiple classification hierascff]. Within SMS we want
to leverage operations that exploit these existing mappieg., to obtain synonyms of
species names, without explicitly representing the maggpor simulating the associ-
ated operations within the mediator.

Semantics-Based Data ConversioriVe are interested in applying operations during
mediation that can transform and integrate data based arirtiied meaning. How-
ever, for scientific data, the nature of these conversiomgfen difficult to express ex-
plicitly within a conceptual model. A large number of ecdlay datasets represent real-
world observations (like measuring the abundance of aquéati species), and therefore
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often have slightly different spatial and temporal cordextse different measurement
protocols, and measure similar information in disparatgsa@.g., area and count in
one dataset, and density, which is a function of area andtcoua second dataset).
As with taxonomic classification, we want the mediator toleigexisting conversion
operations when possible.

This short paper describes an initial logic-based SMS pyp#othat leverages on-
tologies, semantic descriptions, and simple externalices\(primarily taxonomic) to
help researchers find relevant datasets for ecological lingdén Section 2 we de-
scribe our motivating scenario. In Section 3 we discussidaifithe prototype through
examples. And in Section 4 we conclude with future work.

2 Motivation: Ant Parasitism and Niche Modeling

A diverse and much studied group of organisms in ecologyasamily Formicidae,
commonly known as ants. Ants account for a significant portibthe animal biomass
on earth and churn much of the earth’s soil. Ants are alsabkacimals that provide
insights into the evolution of social behaviors. One sucinglex social behavior is
parasitism between ant species [4].

The environment in which parasitism is likely to occur paes$ important data on
how parasitism arises. For example, one theory statesriteatant parasitism is more
likely to arise in colder climates than in warmer ones. Tharsgecological researcher
may be interested in the questidn:California, what environmental properties play a
role in determining the ranges of ants involved in inter-ant parasitism?

Answering this question requires access to a wide array @f &) the types of
parasitic relationships that exist between ants, (2) theeasaof species of ants taking
part in these parasitic relationships, (3) georeferentsgvations of these species of
ants, and (4) the climate and other environmental datamvitté desired locations.

Today, these datasets are typically sought out by the researetrieved, and inte-
grated manually. The researcher analyzes the data by itrthrough an appropriate
ecological model, the result of which is used to help test pottyesis. In our exam-
ple, an ecological niche model [10] can be used, which takés @bout the presence
of a species and the environmental conditions of the areaéstgpn, and produces a
set of rules that define a “niche” (i.e., the conditions neagsfor the species to exist)
relative to the given environmental conditions and presefata. The rest of this paper
describes a first step towards helping a researcher to ttlleclatasets needed to test
inter-ant parasitism, and similar high-level questions.

3 The Prototype

Our dataset-discovery architecture is shown in Figure letfo§repositories store on-
tological information, datasets, and semantic descrigtiof the datasets). A semantic
description logically annotates a dataset using conceptsaes in the ontology reposi-
tory. Semantic descriptions are expressed as slmgatias-view mappings [3, 8], which
can succinctly represent mappings from information withidataset to corresponding
ontological information. We also consider external seggimn the architecture, which
currently consist of synonym and unit-conversion operetid he SMS engine accepts
a user query and returns the set of relevant datasets tisdy $he given query.
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Fig. 1. The initial SMS architecture for ecological data mediation.
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d genus  species count lat lon genus species cnt It In
' Manica parasitica 2 37.85 -119.57 2 Camponotus fornasinii 1 -29.65 26.18
Manica bradelyi 1 3832 -119.67
d man-para-cnt aph-cald-cnt It In genusl species] genus2 species2
83 6 37.56 -120.03 * Manica parasitica Aphaenogaster calderoni

Fig. 2. Four heterogeneous datasétshroughd..

Figure 2 shows example portions of four datasets that carsée o help answer
ant and inter-ant parasitism queries. Datalseéh Figure 2 contains georeferenced ant
data from AntWeb and consists of approximately 1,700 observations, eachhaftw
consist of a genus and species scientific name, an abundanog and the location
of the observation. Dataset in Figure 2 contains similar georeferenced ant data from
the Iziko South African Museum (ISAM),consisting of about 12,000 observations.
Dataset; in Figure 2 is a typical representation used for georefexdmmo-occurrence
data, where species are encoded within the schema of the Tt dataset contains
only five tuples. Dataset, in Figure 2 describes specific ants that participate in in-
quilinism inter-ant parasitism. The first two columns dentite parasite and the last
two columns denote the host. Over two-hundred pairs of aetsl@scribed using four
distinct datasets, each representing a particular parasiationship (all data were de-
rived from Table 12-1 of [4]). Finally, Figure 3 shows a siifipdd fragment of the
measurement and parasitism ontologies currently beinglojeed within SEEK.

The following conjunctive queries define semantic desienijst of datasets,, ds,
andd, (the semantic description df is identical tod,).

d;(Ge,Sp,Co,Lt,Ln) :-
Observation(O), value(O,Co), context(O,S), location(S,P), LatLonPoint(P),
latDeg(P,Lt), lonDeg(P,Ln), item(O,A), Abundance(A), property(A,N), SciName(N),
genus(N,Ge), species(N,Se).

ds(Mp, Cf, Lt, Ln) :-
Observation(0;), value(O1,Mp), context(O,S), location(S,P), LatLonPoint(P),
latDeg(P,Lt), lonDeg(P,Ln), item(O4,A;), Abundance(A,), property(A:,N1),
SciName(N1), genus(Ny,'Manica’), species(N;,‘parasitica’), Observation(O-),
value(O2,Cf), context(O-,S), item(O2,A2), Abundance(Az), property(Az2,N2),
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Fig. 3. Simplified ontologies for measurement observations and inter-argipsina

SciName(N-), genus(N2,'Aphaenogaster’), species(N2,‘calderoni’).

d4(Gl,Sl,G2,Sg) -
InquilinismParasite(P), SciName(P), genus(P,G,), species(P,S;), InquilinismHost(H),
genus(H,G2), species(H,S-2), inquilinismOf(P,H).

The following example is a dataset-discovery query defingdrims of the ontology
that asks for all datasets containing georeferenced abgrdaeasurements of Man-
ica bradleyi ants observed within California (as defined h®y given bounding box).
Dataset-discovery queries allow predicates to be anrtbtath dataset variables, given
asD below. Each semantic description is also implicitly antedawith its dataset iden-
tifier, e.g., every predicate in the body of the first desaiptbove would be annotated
with d;. A dataset handle is returned by the query below if each ftammnnotated with
D is satisfied by the dataset, assuming the given inequalgy {he latitude-longitude)
conditions also hold.

g1 (D) :- Observation(O)”, context(0,S)?, location(S,P)”, LatLonPoint(P)”,
latDeg(P,Lt)", lonDeg(P.Ln)”, item(O,A)?, Abundance(A)”, property(A,N)”,
SciName(N)?, genus(N,'Manica’)”, species(N,‘bradleyi’)”, Lt > 33, Lt < 42,
Ln >-124.3, Ln < -115.

Using a standard data-integration query-answering algaorj8], the query above is an-
swered by (1) findingelevant information sources, i.e., sources whose view mappings
overlap with the given query, and (2) using the relevantsesirewriting the user query,
producing a sound query expressed only against the undgrtidta sources, possibly
containing additional conditions. We extend this apprdaglalso considering dataset
annotations on query formulas. In our exampleandd. are the only relevant datasets
for the above query, giving the following query rewritinjote that after executing the
queries below, only, is returned; the ISAM dataset does not contain the givenispec

g1(dy) :- di(‘Manica’,'bradleyi’,Ct,Lt,Ln), Lt > 33, Lt < 42, Ln > -124.3, Ln < -115.
gi1(dz) :- d2(‘Manica’,'bradleyi’,Ct,Lt,Ln), Lt > 33, Lt < 42, Ln > -124.3, Ln < -115.

The following query is similar taj;, but uses an external service (prefixed with
‘ext:”) for computing synonymy of species names.



g2(D) :- Observation(O)”, context(0,S)”, location(S,P)?, LatLonPoint(P)?,
latDeg(P,Lt)", lonDeg(P,Ln)”, item(0,A)”, Abundance(A)”, property(A,N)”,
SciName(N)?, genus(N,Ge)?, species(N,Sp)”, Lt > 33, Lt < 42, Ln > -124.3,
Ln < -115, ext:synonym(‘Manica’,'bradleyi’,Ge,Sp).

The synonymy operation, encapsulated as a logical fornidaeg draws from descrip-
tions in the Hymenoptera Name Server [5], and supports o#02taxa of ants and
their synonymy mappings. In the operation, a given genesisp pair is always a syn-
onym of itself. In the prototype, we equate synonyms betwara as equivalence re-
lations. This assumption is often an oversimplificationgtdl in future work we intend

to explore different synonymy relations between taxa.

The following rewritings are obtained from the above quéifger execution, the
rewritten ¢ query will return datasetl; as well as datasel;; the latter because
Aphaenogaster calderoni is a synonym of Manica bradleyte Moat we could have
discarded the third rewriting below since all argumentshef $ynonym operation are
ground, and for the particular binding, the species’ arevabiti synonyms.

g2(d1) :- d1(Ge,Sp,Ct,Lt,Ln), Lt > 33, Lt < 42, Ln > -124.3, Ln < -115,
ext:synonym(‘Manica’,'bradleyi’,Ge,Sp).

g2(d2) :- d2(Ge,Sp,Ct,Lt,Ln), Lt > 33, Lt < 42, Ln > -124.3, Ln < -115,
ext:synonym(‘Manica’,'bradleyi’,Ge,Sp).

gz2(ds) :- d3(Mp,Cf,Lt,Ln), Lt > 33, Lt < 42, Ln > -124.3, Ln < -115,
ext:synonym(‘Manica’,'bradleyi’,'Manica’,'parasitica’).

g2(ds) :- d3(Mp,Cf,Lt,Ln), Lt > 33, Lt < 42, Ln > -124.3, Ln < -115,
ext:synonym(‘Manica’,'bradleyi’,'Aphaenogaster,‘calderoni’).

Finally, the following query finds datasets containing géerenced measurements
of parasites of Manica bradleyi within California. Thusetfuery finds the relevant
ant presence data needed for our original parasitism guestir a single host species.
The query uses the external synonym operation and profextatitude, longitude, and
genus and species hames of the relevant observations ghehrasult (with additional
pre-processing) can be fed into a scientific workflow, sucé mishe model.

g3(D,Lt,Ln,Ge,Sp) :- Observation(0)?, context(O,S)?, location(S,P)?, LatLonPoint(P)?,
latDeg(P,Lt)", lonDeg(P.Ln)”, item(O,A)”, Abundance(A)”, property(A,N)”,
SciName(N)”, genus(N,Ge)”, species(N,Sp)?, Lt > 32, Lt < 42, Ln > -124.3,
Ln < -115, Host(Ho), genus(Ho,Ge;), species(Ho,Sp1),
ext:synonym(‘Manica’,'bradleyi’,Ge1,Sp1), Parasite(Pa), genus(Pa,Ge-),
species(Pa,Sp2), parasiteOf(Pa,Ho), ext:synonym(Gez,Sp2,Ge,Sp).

The rewritings ofgs are shown below. The result includes the tuples37.85,-
119.57,'Manica’,'parasitica’) and (ds,37.56,-120.03,'Manica’,'parasitica’), where only
datasetsl; andds; contain possible answers. In particular, Manica parasigie in-
quilinism parasites of Manica bradleyi, which is deriveonfr datasetl, by computing
Manica bradleyi synonyms.

gs(dy,Lt,Ln,Ge,Sp) :- d1(Ge,Sp,Ct,Lt,Ln), Lt > 33, Lt <42, Ln > -124.3, Ln < -115,
ext:synonym(‘Manica’,'bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Gez,Sp2),
ext:synonym(Ge-,Sp2,Ge,Sp).

gs(dy,Lt,Ln,Ge,Sp) :- d=(Ge,Sp,Ct,Lt,Ln), Lt > 33, Lt < 42, Ln > -124.3, Ln < -115,



ext:synonym(‘Manica’,'bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ges,Sp2,Ge,Sp).

gs(di,Lt,Ln,Ge,Sp) :- d3s(Mp,Cf,Lt,Ln), Lt > 33, Lt < 42, Ln > -124.3, Ln < -115,
ext:synonym(‘Manica’,'bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Gez,Sp2,‘Manica’,'parasitica’).

gs(dy,Lt,Ln,Ge,Sp) :- d3s(Mp,Cf,Lt,Ln), Lt > 33, Lt < 42, Ln > -124.3, Ln < -115,
ext:synonym(‘Manica’,'bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge-,Sp2,'Aphaenogaster,‘calderoni).

4 Summary and Future Work

We have described an initial prototype that enables sembased dataset-discovery
queries and supports mixing external services with trawliti query-answering tech-
nigues. The prototype is written in Prolog and has an accogipg web interface for
gueries over geographic region, species, and parasittiaeship. We are extending
the prototype by adding additional ontology-based quesnaning techniques includ-
ing support for external services that perform transfoiomabperations. To illustrate,
the semantic description below is for a dataset similat;tdut uses an external ser-
vice UTM2LatLon(Ux,Uy,Re,Zo,Lt,Ln) that converts UTM to latitude-longitude degree
coordinates.

ds(Ge,Sp,Co,Ux,Uy,Re,Zo0) :-

Observation(O), value(O,Co), context(O,S), location(S,P), UTMPoint(P),

UTMx(P,Ux), UTMy(P,Uy), region(P,Re), zone(P,Zo), item(O,A), Abundance(A),

property(A,N), SciName(N), genus(N,Ge), species(N,Se).
To answer query;, we want to (1) returis as a relevant source, since UTM points can
be converted to latitude-longitude points usisigM2LatLon, and (2) correctly insert a
call to UTM2LatLon into the resulting query as part of the query rewriting. We ar
currently exploringparameter dependency specifications for this purpose, in which the
domain and range of an external service are semanticallgrided. In general, we
believe incorporating external services into mediatohiéectures provides a powerful
framework to support complex integration and transfororatif scientific data.
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