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1 Introduction

Similar to content on the web, scientific data is highly heterogeneous and can ben-
efit from rich semantic descriptions. We are particularly interested in developing an
infrastructure for expressing explicit semantic descriptions of ecological data (and life-
sciences data in general), and exploiting these descriptions to provide support for au-
tomated data integration and transformation within scientific workflows [2]. Using se-
mantic descriptions, our goal is to provide scientists with: (1) tools to easily search for
and retrieve datasets relevant to their study (i.e., dataprocurement), (2) the ability to
select a subset of returned datasets as input to a scientific workflow, and (3) automated
integration and restructuring of the selected datasets forseamless workflow execution.

As part of this effort, we are developing theSemantic Mediation System (SMS)
within the SEEK project4, which aims at combining knowledge representation and
semantic-web technologies (e.g., OWL and RDF) with traditional data-integration tech-
niques [3, 8, 9]. We observe that along with these traditional approaches, mediation of
ecological data also requires external, special-purpose services for accessing informa-
tion not easily or conveniently expressed using conceptualmodeling languages, such
as description logics. The following are two specific examples of ecologically relevant,
external services that can be exploited for scientific-dataintegration and transformation.

Taxonomic Classification and Mapping. There is an extensive body of knowledge
on species (both extinct and existing) represented in a variety of different taxonomic
classifications, and new species are still being discovered[7]. The same species can be
denoted in many ways across different classifications, and resolving names of species
requires mappings across multiple classification hierarchies [6]. Within SMS we want
to leverage operations that exploit these existing mappings, e.g., to obtain synonyms of
species names, without explicitly representing the mappings or simulating the associ-
ated operations within the mediator.

Semantics-Based Data Conversion. We are interested in applying operations during
mediation that can transform and integrate data based on their implied meaning. How-
ever, for scientific data, the nature of these conversions are often difficult to express ex-
plicitly within a conceptual model. A large number of ecological datasets represent real-
world observations (like measuring the abundance of a particular species), and therefore
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often have slightly different spatial and temporal contexts, use different measurement
protocols, and measure similar information in disparate ways (e.g., area and count in
one dataset, and density, which is a function of area and count, in a second dataset).
As with taxonomic classification, we want the mediator to exploit existing conversion
operations when possible.

This short paper describes an initial logic-based SMS prototype that leverages on-
tologies, semantic descriptions, and simple external services (primarily taxonomic) to
help researchers find relevant datasets for ecological modeling. In Section 2 we de-
scribe our motivating scenario. In Section 3 we discuss details of the prototype through
examples. And in Section 4 we conclude with future work.

2 Motivation: Ant Parasitism and Niche Modeling
A diverse and much studied group of organisms in ecology is the family Formicidae,
commonly known as ants. Ants account for a significant portion of the animal biomass
on earth and churn much of the earth’s soil. Ants are also social animals that provide
insights into the evolution of social behaviors. One such complex social behavior is
parasitism between ant species [4].

The environment in which parasitism is likely to occur provides important data on
how parasitism arises. For example, one theory states that inter-ant parasitism is more
likely to arise in colder climates than in warmer ones. Thus,an ecological researcher
may be interested in the question:In California, what environmental properties play a
role in determining the ranges of ants involved in inter-ant parasitism?

Answering this question requires access to a wide array of data: (1) the types of
parasitic relationships that exist between ants, (2) the names of species of ants taking
part in these parasitic relationships, (3) georeferenced observations of these species of
ants, and (4) the climate and other environmental data within the desired locations.

Today, these datasets are typically sought out by the researcher, retrieved, and inte-
grated manually. The researcher analyzes the data by running it through an appropriate
ecological model, the result of which is used to help test a hypothesis. In our exam-
ple, an ecological niche model [10] can be used, which takes data about the presence
of a species and the environmental conditions of the area in question, and produces a
set of rules that define a “niche” (i.e., the conditions necessary for the species to exist)
relative to the given environmental conditions and presence data. The rest of this paper
describes a first step towards helping a researcher to collect the datasets needed to test
inter-ant parasitism, and similar high-level questions.

3 The Prototype
Our dataset-discovery architecture is shown in Figure 1. A set of repositories store on-
tological information, datasets, and semantic descriptions (of the datasets). A semantic
description logically annotates a dataset using concepts and roles in the ontology reposi-
tory. Semantic descriptions are expressed as soundlocal-as-view mappings [3, 8], which
can succinctly represent mappings from information withina dataset to corresponding
ontological information. We also consider external services in the architecture, which
currently consist of synonym and unit-conversion operations. The SMS engine accepts
a user query and returns the set of relevant datasets that satisfy the given query.
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Fig. 1.The initial SMS architecture for ecological data mediation.

genus species count lat lon
d1

Manica parasitica 2 37.85 -119.57

genus species cnt lt ln

Camponotus fornasinii 1 -29.65 26.18

man-para-cnt aph-cald-cnt lt ln

3 6 37.56 -120.03

genus1 species1 genus2 species2

Manica parasitica Aphaenogaster calderoni

Manica bradelyi 1 38.32 -119.67

d2

d3 d4

Fig. 2.Four heterogeneous datasetsd1 throughd4.

Figure 2 shows example portions of four datasets that can be used to help answer
ant and inter-ant parasitism queries. Datasetd1 in Figure 2 contains georeferenced ant
data from AntWeb5 and consists of approximately 1,700 observations, each of which
consist of a genus and species scientific name, an abundance count, and the location
of the observation. Datasetd2 in Figure 2 contains similar georeferenced ant data from
the Iziko South African Museum (ISAM),6 consisting of about 12,000 observations.
Datasetd3 in Figure 2 is a typical representation used for georeferenced co-occurrence
data, where species are encoded within the schema of the table. This dataset contains
only five tuples. Datasetd4 in Figure 2 describes specific ants that participate in in-
quilinism inter-ant parasitism. The first two columns denote the parasite and the last
two columns denote the host. Over two-hundred pairs of ants are described using four
distinct datasets, each representing a particular parasitic relationship (all data were de-
rived from Table 12-1 of [4]). Finally, Figure 3 shows a simplified fragment of the
measurement and parasitism ontologies currently being developed within SEEK.

The following conjunctive queries define semantic descriptions of datasetsd1, d3,
andd4 (the semantic description ofd2 is identical tod1).

d1(Ge,Sp,Co,Lt,Ln) :-
Observation(O), value(O,Co), context(O,S), location(S,P), LatLonPoint(P),
latDeg(P,Lt), lonDeg(P,Ln), item(O,A), Abundance(A), property(A,N), SciName(N),
genus(N,Ge), species(N,Se).

d3(Mp, Cf, Lt, Ln) :-
Observation(O1), value(O1,Mp), context(O1,S), location(S,P), LatLonPoint(P),
latDeg(P,Lt), lonDeg(P,Ln), item(O1,A1), Abundance(A1), property(A1,N1),
SciName(N1), genus(N1,‘Manica’), species(N1,‘parasitica’), Observation(O2),
value(O2,Cf), context(O2,S), item(O2,A2), Abundance(A2), property(A2,N2),

5 See www.antweb.org
6 Provided by Hamish Robertson, Iziko Museums of Cape Town
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Fig. 3.Simplified ontologies for measurement observations and inter-ant parasitism.

SciName(N2), genus(N2,‘Aphaenogaster’), species(N2,‘calderoni’).
d4(G1,S1,G2,S2) :-

InquilinismParasite(P), SciName(P), genus(P,G1), species(P,S1), InquilinismHost(H),
genus(H,G2), species(H,S2), inquilinismOf(P,H).

The following example is a dataset-discovery query defined in terms of the ontology
that asks for all datasets containing georeferenced abundance measurements of Man-
ica bradleyi ants observed within California (as defined by the given bounding box).
Dataset-discovery queries allow predicates to be annotated with dataset variables, given
asD below. Each semantic description is also implicitly annotated with its dataset iden-
tifier, e.g., every predicate in the body of the first description above would be annotated
with d1. A dataset handle is returned by the query below if each formula annotated with
D is satisfied by the dataset, assuming the given inequality (i.e., the latitude-longitude)
conditions also hold.

q1(D) :- Observation(O)D, context(O,S)D, location(S,P)D, LatLonPoint(P)D,
latDeg(P,Lt)D, lonDeg(P,Ln)D, item(O,A)D, Abundance(A)D, property(A,N)D,
SciName(N)D, genus(N,‘Manica’)D, species(N,‘bradleyi’)D, Lt ≥ 33, Lt ≤ 42,
Ln ≥ -124.3, Ln ≤ -115.

Using a standard data-integration query-answering algorithm [8], the query above is an-
swered by (1) findingrelevant information sources, i.e., sources whose view mappings
overlap with the given query, and (2) using the relevant sources, rewriting the user query,
producing a sound query expressed only against the underlying data sources, possibly
containing additional conditions. We extend this approachby also considering dataset
annotations on query formulas. In our example,d1 andd2 are the only relevant datasets
for the above query, giving the following query rewritings.Note that after executing the
queries below, onlyd1 is returned; the ISAM dataset does not contain the given species.

q1(d1) :- d1(‘Manica’,‘bradleyi’,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115.
q1(d2) :- d2(‘Manica’,‘bradleyi’,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115.

The following query is similar toq1, but uses an external service (prefixed with
‘ext:’) for computing synonymy of species names.



q2(D) :- Observation(O)D, context(O,S)D, location(S,P)D, LatLonPoint(P)D,
latDeg(P,Lt)D, lonDeg(P,Ln)D, item(O,A)D, Abundance(A)D, property(A,N)D,
SciName(N)D, genus(N,Ge)D, species(N,Sp)D, Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3,
Ln ≤ -115, ext:synonym(‘Manica’,‘bradleyi’,Ge,Sp).

The synonymy operation, encapsulated as a logical formula above, draws from descrip-
tions in the Hymenoptera Name Server [5], and supports over 2,500 taxa of ants and
their synonymy mappings. In the operation, a given genus-species pair is always a syn-
onym of itself. In the prototype, we equate synonyms betweentaxa as equivalence re-
lations. This assumption is often an oversimplification [1]and in future work we intend
to explore different synonymy relations between taxa.

The following rewritings are obtained from the above query.After execution, the
rewritten q2 query will return datasetd1 as well as datasetd3; the latter because
Aphaenogaster calderoni is a synonym of Manica bradleyi. Note that we could have
discarded the third rewriting below since all arguments of the synonym operation are
ground, and for the particular binding, the species’ are notvalid synonyms.

q2(d1) :- d1(Ge,Sp,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge,Sp).

q2(d2) :- d2(Ge,Sp,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge,Sp).

q2(d3) :- d3(Mp,Cf,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,‘Manica’,‘parasitica’).

q2(d3) :- d3(Mp,Cf,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,‘Aphaenogaster,‘calderoni’).

Finally, the following query finds datasets containing georeferenced measurements
of parasites of Manica bradleyi within California. Thus, the query finds the relevant
ant presence data needed for our original parasitism question, for a single host species.
The query uses the external synonym operation and projects the latitude, longitude, and
genus and species names of the relevant observations so thatthe result (with additional
pre-processing) can be fed into a scientific workflow, such asa niche model.

q3(D,Lt,Ln,Ge,Sp) :- Observation(O)D, context(O,S)D, location(S,P)D, LatLonPoint(P)D,
latDeg(P,Lt)D, lonDeg(P,Ln)D, item(O,A)D, Abundance(A)D, property(A,N)D,
SciName(N)D, genus(N,Ge)D, species(N,Sp)D, Lt ≥ 32, Lt ≤ 42, Ln ≥ -124.3,
Ln ≤ -115, Host(Ho), genus(Ho,Ge1), species(Ho,Sp1),
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), Parasite(Pa), genus(Pa,Ge2),
species(Pa,Sp2), parasiteOf(Pa,Ho), ext:synonym(Ge2,Sp2,Ge,Sp).

The rewritings ofq3 are shown below. The result includes the tuples(d1,37.85,-
119.57,‘Manica’,‘parasitica’) and (d3,37.56,-120.03,‘Manica’,‘parasitica’), where only
datasetsd1 and d3 contain possible answers. In particular, Manica parasitica are in-
quilinism parasites of Manica bradleyi, which is derived from datasetd4 by computing
Manica bradleyi synonyms.

q3(d1,Lt,Ln,Ge,Sp) :- d1(Ge,Sp,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge2,Sp2,Ge,Sp).

q3(d1,Lt,Ln,Ge,Sp) :- d2(Ge,Sp,Ct,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,



ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge2,Sp2,Ge,Sp).

q3(d1,Lt,Ln,Ge,Sp) :- d3(Mp,Cf,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge2,Sp2,‘Manica’,‘parasitica’).

q3(d1,Lt,Ln,Ge,Sp) :- d3(Mp,Cf,Lt,Ln), Lt ≥ 33, Lt ≤ 42, Ln ≥ -124.3, Ln ≤ -115,
ext:synonym(‘Manica’,‘bradleyi’,Ge1,Sp1), d4(Ge1,Sp1,Ge2,Sp2),
ext:synonym(Ge2,Sp2,‘Aphaenogaster,‘calderoni).

4 Summary and Future Work
We have described an initial prototype that enables semantic-based dataset-discovery
queries and supports mixing external services with traditional query-answering tech-
niques. The prototype is written in Prolog and has an accompanying web interface for
queries over geographic region, species, and parasitic relationship. We are extending
the prototype by adding additional ontology-based query answering techniques includ-
ing support for external services that perform transformation operations. To illustrate,
the semantic description below is for a dataset similar tod1, but uses an external ser-
vice UTM2LatLon(Ux,Uy,Re,Zo,Lt,Ln) that converts UTM to latitude-longitude degree
coordinates.

d5(Ge,Sp,Co,Ux,Uy,Re,Zo) :-
Observation(O), value(O,Co), context(O,S), location(S,P), UTMPoint(P),
UTMx(P,Ux), UTMy(P,Uy), region(P,Re), zone(P,Zo), item(O,A), Abundance(A),
property(A,N), SciName(N), genus(N,Ge), species(N,Se).

To answer queryq1, we want to (1) returnd5 as a relevant source, since UTM points can
be converted to latitude-longitude points usingUTM2LatLon, and (2) correctly insert a
call to UTM2LatLon into the resulting query as part of the query rewriting. We are
currently exploringparameter dependency specifications for this purpose, in which the
domain and range of an external service are semantically described. In general, we
believe incorporating external services into mediator architectures provides a powerful
framework to support complex integration and transformation of scientific data.
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